Temporally Disentangled Representation Learning under Unknown Nonstationarity
- URL: http://arxiv.org/abs/2310.18615v2
- Date: Thu, 1 Aug 2024 09:43:57 GMT
- Title: Temporally Disentangled Representation Learning under Unknown Nonstationarity
- Authors: Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles, Eric Xing, Kun Zhang,
- Abstract summary: We introduce NCTRL, a principled estimation framework, to reconstruct time-delayed latent causal variables.
Empirical evaluations demonstrated the reliable identification of time-delayed latent causal influences.
- Score: 35.195001384417395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In unsupervised causal representation learning for sequential data with time-delayed latent causal influences, strong identifiability results for the disentanglement of causally-related latent variables have been established in stationary settings by leveraging temporal structure. However, in nonstationary setting, existing work only partially addressed the problem by either utilizing observed auxiliary variables (e.g., class labels and/or domain indexes) as side information or assuming simplified latent causal dynamics. Both constrain the method to a limited range of scenarios. In this study, we further explored the Markov Assumption under time-delayed causally related process in nonstationary setting and showed that under mild conditions, the independent latent components can be recovered from their nonlinear mixture up to a permutation and a component-wise transformation, without the observation of auxiliary variables. We then introduce NCTRL, a principled estimation framework, to reconstruct time-delayed latent causal variables and identify their relations from measured sequential data only. Empirical evaluations demonstrated the reliable identification of time-delayed latent causal influences, with our methodology substantially outperforming existing baselines that fail to exploit the nonstationarity adequately and then, consequently, cannot distinguish distribution shifts.
Related papers
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Probabilistic Learning of Multivariate Time Series with Temporal
Irregularity [25.91078012394032]
temporal irregularities, including nonuniform time intervals and component misalignment.
We develop a conditional flow representation to non-parametrically represent the data distribution, which is typically non-Gaussian.
The broad applicability and superiority of the proposed solution are confirmed by comparing it with existing approaches through ablation studies and testing on real-world datasets.
arXiv Detail & Related papers (2023-06-15T14:08:48Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - eCDANs: Efficient Temporal Causal Discovery from Autocorrelated and
Non-stationary Data (Student Abstract) [0.3314882635954752]
We present a constraint-based CD approach for autocorrelated and non-stationary time series data (eCDANs)
eCDANs can detect lagged and contemporaneous causal relationships along with temporal changes.
Experiments on synthetic and real-world data show that eCDANs can identify time influence and outperform the baselines.
arXiv Detail & Related papers (2023-03-06T01:59:45Z) - Temporally Disentangled Representation Learning [14.762231867144065]
It is unknown whether the underlying latent variables and their causal relations are identifiable if they have arbitrary, nonparametric causal influences in between.
We propose textbftextttTDRL, a principled framework to recover time-delayed latent causal variables.
Our approach considerably outperforms existing baselines that do not correctly exploit this modular representation of changes.
arXiv Detail & Related papers (2022-10-24T23:02:49Z) - Learning Temporally Causal Latent Processes from General Temporal Data [22.440008291454287]
We propose two provable conditions under which temporally causal latent processes can be identified from their nonlinear mixtures.
Experimental results on various data sets demonstrate that temporally causal latent processes are reliably identified from observed variables.
arXiv Detail & Related papers (2021-10-11T17:16:19Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.