Electrical Impedance Tomography: A Fair Comparative Study on Deep
Learning and Analytic-based Approaches
- URL: http://arxiv.org/abs/2310.18636v1
- Date: Sat, 28 Oct 2023 08:45:51 GMT
- Title: Electrical Impedance Tomography: A Fair Comparative Study on Deep
Learning and Analytic-based Approaches
- Authors: Derick Nganyu Tanyu, Jianfeng Ning, Andreas Hauptmann, Bangti Jin,
Peter Maass
- Abstract summary: Electrical Impedance Tomography (EIT) is a powerful imaging technique with diverse applications.
The EIT inverse problem is about inferring the internal conductivity distribution of an object from measurements taken on its boundary.
Recent years have witnessed significant progress, driven by innovations in analytic-based approaches and deep learning.
- Score: 2.7392924984179348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrical Impedance Tomography (EIT) is a powerful imaging technique with
diverse applications, e.g., medical diagnosis, industrial monitoring, and
environmental studies. The EIT inverse problem is about inferring the internal
conductivity distribution of an object from measurements taken on its boundary.
It is severely ill-posed, necessitating advanced computational methods for
accurate image reconstructions. Recent years have witnessed significant
progress, driven by innovations in analytic-based approaches and deep learning.
This review explores techniques for solving the EIT inverse problem, focusing
on the interplay between contemporary deep learning-based strategies and
classical analytic-based methods. Four state-of-the-art deep learning
algorithms are rigorously examined, harnessing the representational
capabilities of deep neural networks to reconstruct intricate conductivity
distributions. In parallel, two analytic-based methods, rooted in mathematical
formulations and regularisation techniques, are dissected for their strengths
and limitations. These methodologies are evaluated through various numerical
experiments, encompassing diverse scenarios that reflect real-world
complexities. A suite of performance metrics is employed to assess the efficacy
of these methods. These metrics collectively provide a nuanced understanding of
the methods' ability to capture essential features and delineate complex
conductivity patterns. One novel feature of the study is the incorporation of
variable conductivity scenarios, introducing a level of heterogeneity that
mimics textured inclusions. This departure from uniform conductivity
assumptions mimics realistic scenarios where tissues or materials exhibit
spatially varying electrical properties. Exploring how each method responds to
such variable conductivity scenarios opens avenues for understanding their
robustness and adaptability.
Related papers
- Learned enclosure method for experimental EIT data [1.4602363426887832]
We propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks.
Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
arXiv Detail & Related papers (2025-04-15T12:18:26Z) - You are out of context! [0.0]
New data can act as forces stretching, compressing, or twisting the geometric relationships learned by a model.
We propose a novel drift detection methodology for machine learning (ML) models based on the concept of ''deformation'' in the vector space representation of data.
arXiv Detail & Related papers (2024-11-04T10:17:43Z) - Simultaneous Dimensionality Reduction for Extracting Useful Representations of Large Empirical Multimodal Datasets [0.0]
We focus on the sciences of dimensionality reduction as a means to obtain low-dimensional descriptions from high-dimensional data.
We address the challenges posed by real-world data that defy conventional assumptions, such as complex interactions within systems or high-dimensional dynamical systems.
arXiv Detail & Related papers (2024-10-23T21:27:40Z) - Emotion Recognition Using Transformers with Masked Learning [7.650385662008779]
This study leverages the Vision Transformer (ViT) and Transformer models to focus on the estimation of Valence-Arousal (VA)
This approach transcends traditional Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) based methods, proposing a new Transformer-based framework.
arXiv Detail & Related papers (2024-03-19T12:26:53Z) - Deep Learning-based Analysis of Basins of Attraction [49.812879456944984]
This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems.
The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field.
arXiv Detail & Related papers (2023-09-27T15:41:12Z) - Neural DAEs: Constrained neural networks [4.212663349859165]
We implement related methods in residual neural networks, despite some fundamental scenario differences.
We show when to use which method based on experiments involving simulations of multi-body pendulums and molecular dynamics scenarios.
Several of our methods are easy to implement in existing code and have limited impact on training performance while giving significant boosts in terms of inference.
arXiv Detail & Related papers (2022-11-25T18:58:28Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
We propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges.
By representing EEG signals withspectral-temporal information, the proposed method can be utilized for diverse paradigms.
arXiv Detail & Related papers (2020-03-02T04:06:47Z) - Disentangling Adaptive Gradient Methods from Learning Rates [65.0397050979662]
We take a deeper look at how adaptive gradient methods interact with the learning rate schedule.
We introduce a "grafting" experiment which decouples an update's magnitude from its direction.
We present some empirical and theoretical retrospectives on the generalization of adaptive gradient methods.
arXiv Detail & Related papers (2020-02-26T21:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.