論文の概要: Causal discovery in a complex industrial system: A time series benchmark
- arxiv url: http://arxiv.org/abs/2310.18654v1
- Date: Sat, 28 Oct 2023 09:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 17:20:03.884064
- Title: Causal discovery in a complex industrial system: A time series benchmark
- Title(参考訳): 複合産業システムにおける因果発見:時系列ベンチマーク
- Authors: S{\o}ren Wengel Mogensen and Karin Rathsman and Per Nilsson
- Abstract要約: 因果発見は、観測データからグラフで表される因果構造を生成する。
専門知識から構築された因果グラフとともに,欧州スパレーションソースの産業サブシステムからのデータセットを提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery outputs a causal structure, represented by a graph, from
observed data. For time series data, there is a variety of methods, however, it
is difficult to evaluate these on real data as realistic use cases very rarely
come with a known causal graph to which output can be compared. In this paper,
we present a dataset from an industrial subsystem at the European Spallation
Source along with its causal graph which has been constructed from expert
knowledge. This provides a testbed for causal discovery from time series
observations of complex systems, and we believe this can help inform the
development of causal discovery methodology.
- Abstract(参考訳): 因果発見は、観測データからグラフで表される因果構造を出力する。
時系列データには様々な方法があるが、実データ上でそれらを現実的なユースケースとして評価することは困難であり、出力を比較できる既知の因果グラフは極めて稀である。
本稿では,ヨーロッパスポーラレーション源の産業サブシステムから得られたデータセットと,専門家の知識から構築した因果グラフについて述べる。
これは複雑なシステムの時系列観測から因果発見のためのテストベッドを提供し、因果発見方法論の開発に役立ちます。
関連論文リスト
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - $\texttt{causalAssembly}$: Generating Realistic Production Data for
Benchmarking Causal Discovery [1.3048920509133808]
我々は、因果探索手法のベンチマークをサポートする半合成製造データを生成するシステムを構築した。
我々は、柔軟に推定し、条件分布を表すために分布ランダムな森林を用いる。
このライブラリを用いて、よく知られた因果探索アルゴリズムをベンチマークする方法を示す。
論文 参考訳(メタデータ) (2023-06-19T10:05:54Z) - Disentangled Causal Graph Learning for Online Unsupervised Root Cause
Analysis [49.910053255238566]
ルート原因分析(RCA)は、システム監視データを分析することにより、システム障害/障害の根本原因を特定することができる。
従来の研究は主にオフラインのRCAアルゴリズムの開発に重点を置いており、しばしば手動でRCAプロセスを開始する必要がある。
我々は、RCAプロセスを自動的に起動し、RCAモデルを漸進的に更新できる新しいオンラインRCAフレームワークであるCORALを提案する。
論文 参考訳(メタデータ) (2023-05-18T01:27:48Z) - Causal Discovery from Temporal Data: An Overview and New Perspectives [6.251443497694126]
時間データの分析は、様々なアプリケーションに非常に有用である。
因果的発見 時間的データから因果関係を 学ぶことは 興味深いが 重要な課題だ
本稿では,2つのカテゴリ間の相関関係を定義し,既存のソリューションの体系的概要を提供する。
論文 参考訳(メタデータ) (2023-03-17T16:45:01Z) - CUTS: Neural Causal Discovery from Irregular Time-Series Data [27.06531262632836]
時系列データからの因果発見は、機械学習における中心的なタスクである。
本稿では,ニューラルグランガー因果探索アルゴリズムであるCUTSについて述べる。
提案手法は,非理想的な観測を行う実アプリケーションに因果発見を適用するための有望なステップとなる。
論文 参考訳(メタデータ) (2023-02-15T04:16:34Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Causal Discovery from Sparse Time-Series Data Using Echo State Network [0.0]
時系列データ間の因果関係の発見は、症状の原因の診断に役立つ。
本稿では,2つの部分から構成される新しいシステムを提案する。第1部はガウスプロセス回帰を,第2部はエコー状態ネットワークを活用する。
本稿では,対応するマシューズ相関係数 (MCC) と受信器動作特性曲線 (ROC) について報告する。
論文 参考訳(メタデータ) (2022-01-09T05:55:47Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。