Energy-Based Models for Anomaly Detection: A Manifold Diffusion Recovery
Approach
- URL: http://arxiv.org/abs/2310.18677v1
- Date: Sat, 28 Oct 2023 11:18:39 GMT
- Title: Energy-Based Models for Anomaly Detection: A Manifold Diffusion Recovery
Approach
- Authors: Sangwoong Yoon, Young-Uk Jin, Yung-Kyun Noh, Frank C. Park
- Abstract summary: We present a new method of training energy-based models (EBMs) for anomaly detection that leverages low-dimensional structures within data.
The proposed algorithm, Manifold Projection-Diffusion Recovery (MPDR), first perturbs a data point along a low-dimensional manifold that approximates the training dataset.
Experimental results show that MPDR exhibits strong performance across various anomaly detection tasks involving diverse data types.
- Score: 12.623417770432146
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a new method of training energy-based models (EBMs) for anomaly
detection that leverages low-dimensional structures within data. The proposed
algorithm, Manifold Projection-Diffusion Recovery (MPDR), first perturbs a data
point along a low-dimensional manifold that approximates the training dataset.
Then, EBM is trained to maximize the probability of recovering the original
data. The training involves the generation of negative samples via MCMC, as in
conventional EBM training, but from a different distribution concentrated near
the manifold. The resulting near-manifold negative samples are highly
informative, reflecting relevant modes of variation in data. An energy function
of MPDR effectively learns accurate boundaries of the training data
distribution and excels at detecting out-of-distribution samples. Experimental
results show that MPDR exhibits strong performance across various anomaly
detection tasks involving diverse data types, such as images, vectors, and
acoustic signals.
Related papers
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
Diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI)
We provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence.
We propose a novel data extraction method named textbfSurrogate condItional Data Extraction (SIDE) that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs.
arXiv Detail & Related papers (2024-10-03T13:17:06Z) - An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations [21.411327264448058]
We propose an expectation-maximization (EM) approach to train diffusion models from corrupted observations.
Our method alternates between reconstructing clean images from corrupted data using a known diffusion model (E-step) and refining diffusion model weights based on these reconstructions (M-step)
This iterative process leads the learned diffusion model to gradually converge to the true clean data distribution.
arXiv Detail & Related papers (2024-07-01T07:00:17Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Generalized Contrastive Divergence: Joint Training of Energy-Based Model
and Diffusion Model through Inverse Reinforcement Learning [13.22531381403974]
Generalized Contrastive Divergence (GCD) is a novel objective function for training an energy-based model (EBM) and a sampler simultaneously.
We present preliminary yet promising results showing that joint training is beneficial for both EBM and a diffusion model.
arXiv Detail & Related papers (2023-12-06T10:10:21Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.