DySurv: Dynamic Deep Learning Model for Survival Prediction in the ICU
- URL: http://arxiv.org/abs/2310.18681v2
- Date: Mon, 4 Mar 2024 10:29:34 GMT
- Title: DySurv: Dynamic Deep Learning Model for Survival Prediction in the ICU
- Authors: Munib Mesinovic, Peter Watkinson, Tingting Zhu
- Abstract summary: We propose a novel conditional variational autoencoder-based method called DySurv.
DySurv uses a combination of static and time-series measurements from patient electronic health records to estimate the risk of death dynamically.
The predictive capacity of DySurv is consistent and the survival estimates remain disentangled across different datasets.
- Score: 2.9404725327650767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis focuses on estimating time-to-event distributions which can
help in dynamic risk prediction in healthcare. Extending beyond the classical
Cox model, deep learning techniques have been developed which moved away from
the constraining assumptions of proportional hazards. Traditional statistical
models often only include static information where, in this work, we propose a
novel conditional variational autoencoder-based method called DySurv, which
uses a combination of static and time-series measurements from patient
electronic health records to estimate the risk of death dynamically. DySurv has
been tested on several time-to-event benchmarks where it outperforms existing
methods, including deep learning methods, and we evaluate it on real-world
intensive care unit data from MIMIC-IV and eICU. The predictive capacity of
DySurv is consistent and the survival estimates remain disentangled across
different datasets supporting the idea that dynamic deep learning models based
on conditional variational inference in multi-task cases can be robust models
for survival analysis.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
We propose a framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data.
Our framework uses any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions.
We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 patients.
arXiv Detail & Related papers (2023-08-17T03:46:23Z) - XMI-ICU: Explainable Machine Learning Model for Pseudo-Dynamic
Prediction of Mortality in the ICU for Heart Attack Patients [3.5475382876263915]
Heart attack is one of the greatest contributors to mortality in the United States and globally.
We develop a novel pseudo-dynamic machine learning framework for mortality prediction in the ICU with interpretability and clinical risk analysis.
arXiv Detail & Related papers (2023-05-10T12:53:18Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Real-time Prediction for Mechanical Ventilation in COVID-19 Patients
using A Multi-task Gaussian Process Multi-objective Self-attention Network [9.287068570192057]
We propose a robust in-time predictor for in-hospital COVID-19 patient's probability of requiring mechanical ventilation.
A challenge in the risk prediction for COVID-19 patients lies in the great variability and irregular sampling of patient's vitals and labs observed in the clinical setting.
We frame the prediction task into a multi-objective learning framework, and the risk scores at all time points are optimized altogether.
arXiv Detail & Related papers (2021-02-01T20:35:22Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.