Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs
- URL: http://arxiv.org/abs/2308.09896v1
- Date: Sat, 19 Aug 2023 03:24:34 GMT
- Title: Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs
- Authors: Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D. Salim, Antonio Jimeno
Yepes
- Abstract summary: This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
- Score: 9.578930989075035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the risk of in-hospital mortality from electronic health records
(EHRs) has received considerable attention. Such predictions will provide early
warning of a patient's health condition to healthcare professionals so that
timely interventions can be taken. This prediction task is challenging since
EHR data are intrinsically irregular, with not only many missing values but
also varying time intervals between medical records. Existing approaches focus
on exploiting the variable correlations in patient medical records to impute
missing values and establishing time-decay mechanisms to deal with such
irregularity. This paper presents a novel contrastive learning-based
imputation-prediction network for predicting in-hospital mortality risks using
EHR data. Our approach introduces graph analysis-based patient stratification
modeling in the imputation process to group similar patients. This allows
information of similar patients only to be used, in addition to personal
contextual information, for missing value imputation. Moreover, our approach
can integrate contrastive learning into the proposed network architecture to
enhance patient representation learning and predictive performance on the
classification task. Experiments on two real-world EHR datasets show that our
approach outperforms the state-of-the-art approaches in both imputation and
prediction tasks.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - A Knowledge Distillation Approach for Sepsis Outcome Prediction from
Multivariate Clinical Time Series [2.621671379723151]
We use knowledge distillation via constrained variational inference to distill the knowledge of a powerful "teacher" neural network model.
We train a "student" latent variable model to learn interpretable hidden state representations to achieve high predictive performance for sepsis outcome prediction.
arXiv Detail & Related papers (2023-11-16T05:06:51Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.