PrObeD: Proactive Object Detection Wrapper
- URL: http://arxiv.org/abs/2310.18788v1
- Date: Sat, 28 Oct 2023 19:25:01 GMT
- Title: PrObeD: Proactive Object Detection Wrapper
- Authors: Vishal Asnani, Abhinav Kumar, Suya You, Xiaoming Liu
- Abstract summary: PrObeD consists of an encoder-decoder architecture, where the encoder network generates an image-dependent signal templates to encrypt the input images.
We propose a wrapper based on proactive schemes, PrObeD, which enhances the performance of these object detectors by learning a signal.
Our experiments on MS-COCO, CAMO, COD$10$K, and NC$4$K datasets show improvement over different detectors after applying PrObeD.
- Score: 15.231600709902127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Previous research in $2D$ object detection focuses on various tasks,
including detecting objects in generic and camouflaged images. These works are
regarded as passive works for object detection as they take the input image as
is. However, convergence to global minima is not guaranteed to be optimal in
neural networks; therefore, we argue that the trained weights in the object
detector are not optimal. To rectify this problem, we propose a wrapper based
on proactive schemes, PrObeD, which enhances the performance of these object
detectors by learning a signal. PrObeD consists of an encoder-decoder
architecture, where the encoder network generates an image-dependent signal
termed templates to encrypt the input images, and the decoder recovers this
template from the encrypted images. We propose that learning the optimum
template results in an object detector with an improved detection performance.
The template acts as a mask to the input images to highlight semantics useful
for the object detector. Finetuning the object detector with these encrypted
images enhances the detection performance for both generic and camouflaged. Our
experiments on MS-COCO, CAMO, COD$10$K, and NC$4$K datasets show improvement
over different detectors after applying PrObeD. Our models/codes are available
at https://github.com/vishal3477/Proactive-Object-Detection.
Related papers
- Improving the matching of deformable objects by learning to detect
keypoints [6.4587163310833855]
We propose a novel learned keypoint detection method to increase the number of correct matches for the task of non-rigid image correspondence.
We train an end-to-end convolutional neural network (CNN) to find keypoint locations that are more appropriate to the considered descriptor.
Experiments demonstrate that our method enhances the Mean Matching Accuracy of numerous descriptors when used in conjunction with our detection method.
We also apply our method on the complex real-world task object retrieval where our detector performs on par with the finest keypoint detectors currently available for this task.
arXiv Detail & Related papers (2023-09-01T13:02:19Z) - Detector Guidance for Multi-Object Text-to-Image Generation [61.70018793720616]
Detector Guidance (DG) integrates a latent object detection model to separate different objects during the generation process.
Human evaluations demonstrate that DG provides an 8-22% advantage in preventing the amalgamation of conflicting concepts.
arXiv Detail & Related papers (2023-06-04T02:33:12Z) - Learning Remote Sensing Object Detection with Single Point Supervision [17.12725535531483]
Pointly Supervised Object Detection (PSOD) has attracted considerable interests due to its lower labeling cost as compared to box-level supervised object detection.
We make the first attempt to achieve RS object detection with single point supervision, and propose a PSOD method tailored for RS images.
Our method can achieve significantly better performance as compared to state-of-the-art image-level and point-level supervised detection methods, and reduce the performance gap between PSOD and box-level supervised object detection.
arXiv Detail & Related papers (2023-05-23T15:06:04Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results.
Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets.
We extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively.
arXiv Detail & Related papers (2022-12-26T12:49:47Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Detective: An Attentive Recurrent Model for Sparse Object Detection [25.5804429439316]
Detective is an attentive object detector that identifies objects in images in a sequential manner.
Detective is a sparse object detector that generates a single bounding box per object instance.
We propose a training mechanism based on the Hungarian algorithm and a loss that balances the localization and classification tasks.
arXiv Detail & Related papers (2020-04-25T17:41:52Z) - Plug & Play Convolutional Regression Tracker for Video Object Detection [37.47222104272429]
Video object detection targets to simultaneously localize the bounding boxes of the objects and identify their classes in a given video.
One challenge for video object detection is to consistently detect all objects across the whole video.
We propose a Plug & Play scale-adaptive convolutional regression tracker for the video object detection task.
arXiv Detail & Related papers (2020-03-02T15:57:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.