D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization
- URL: http://arxiv.org/abs/2012.01821v1
- Date: Thu, 3 Dec 2020 10:54:02 GMT
- Title: D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization
- Authors: Xiuli Bi, Yanbin Liu, Bin Xiao, Weisheng Li, Chi-Man Pun, Guoyin Wang,
and Xinbo Gao
- Abstract summary: Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
- Score: 108.8592577019391
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many detection methods based on convolutional neural networks
(CNNs) have been proposed for image splicing forgery detection. Most of these
detection methods focus on the local patches or local objects. In fact, image
splicing forgery detection is a global binary classification task that
distinguishes the tampered and non-tampered regions by image fingerprints.
However, some specific image contents are hardly retained by CNN-based
detection networks, but if included, would improve the detection accuracy of
the networks. To resolve these issues, we propose a novel network called
dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs
an unfixed encoder and a fixed encoder. The unfixed encoder autonomously learns
the image fingerprints that differentiate between the tampered and non-tampered
regions, whereas the fixed encoder intentionally provides the direction
information that assists the learning and detection of the network. This
dual-encoder is followed by a spatial pyramid global-feature extraction module
that expands the global insight of D-Unet for classifying the tampered and
non-tampered regions more accurately. In an experimental comparison study of
D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in
image-level and pixel-level detection, without requiring pre-training or
training on a large number of forgery images. Moreover, it was stably robust to
different attacks.
Related papers
- DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration [23.71017765426465]
We propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet.
Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions.
A generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions.
arXiv Detail & Related papers (2024-01-28T12:51:01Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
Most advanced unsupervised anomaly detection (UAD) methods rely on modeling feature representations of frozen encoder networks pre-trained on large-scale datasets.
We propose a novel epistemic UAD method, namely ReContrast, which optimize the entire network to reduce biases towards the pre-trained image domain.
We conduct experiments across two popular industrial defect detection benchmarks and three medical image UAD tasks, which shows our superiority over current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-05T05:21:15Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
We propose Vision Transformer based (VIT) unsupervised anomaly detection network.
It utilizes a hierarchical task learning and human experience to enhance its interpretability.
Our method achieves 99.8% AUC, which surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2022-07-20T10:09:53Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
We propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss.
Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD.
arXiv Detail & Related papers (2022-04-18T17:59:01Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - Double-Dot Network for Antipodal Grasp Detection [20.21384585441404]
This paper proposes a new deep learning approach to antipodal grasp detection, named Double-Dot Network (DD-Net)
It follows the recent anchor-free object detection framework, which does not depend on empirically pre-set anchors.
An effective CNN architecture is introduced to localize such fingertips, and with the help of auxiliary centers for refinement, it accurately and robustly infers grasp candidates.
arXiv Detail & Related papers (2021-08-03T14:21:17Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
arXiv Detail & Related papers (2020-07-16T02:00:53Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.