Intrinsic Gaussian Vector Fields on Manifolds
- URL: http://arxiv.org/abs/2310.18824v2
- Date: Sun, 31 Mar 2024 14:12:15 GMT
- Title: Intrinsic Gaussian Vector Fields on Manifolds
- Authors: Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy,
- Abstract summary: We provide primitives needed to deploy the resulting Hodge-Mat'ern Gaussian vector fields on the two-dimensional sphere and the hypertori.
We show that our Gaussian vector fields constitute considerably more refined inductive biases than the extrinsic fields proposed before.
- Score: 40.20536208199638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various applications ranging from robotics to climate science require modeling signals on non-Euclidean domains, such as the sphere. Gaussian process models on manifolds have recently been proposed for such tasks, in particular when uncertainty quantification is needed. In the manifold setting, vector-valued signals can behave very differently from scalar-valued ones, with much of the progress so far focused on modeling the latter. The former, however, are crucial for many applications, such as modeling wind speeds or force fields of unknown dynamical systems. In this paper, we propose novel Gaussian process models for vector-valued signals on manifolds that are intrinsically defined and account for the geometry of the space in consideration. We provide computational primitives needed to deploy the resulting Hodge-Mat\'ern Gaussian vector fields on the two-dimensional sphere and the hypertori. Further, we highlight two generalization directions: discrete two-dimensional meshes and "ideal" manifolds like hyperspheres, Lie groups, and homogeneous spaces. Finally, we show that our Gaussian vector fields constitute considerably more refined inductive biases than the extrinsic fields proposed before.
Related papers
- Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Building Neural Networks on Matrix Manifolds: A Gyrovector Space
Approach [8.003578990152945]
We propose new models and layers for building neural networks on SPD and Grassmann manifold.
We show the effectiveness of our approach in two applications, i.e., human action recognition and knowledge graph completion.
arXiv Detail & Related papers (2023-05-08T09:10:11Z) - REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics [0.0]
We introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems.
We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.
arXiv Detail & Related papers (2022-05-05T16:20:37Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
We develop techniques for broadening the applicability of Gaussian processes.
We introduce a wide class of efficient approximations built from this viewpoint.
We develop a collection of Gaussian process models over non-Euclidean spaces.
arXiv Detail & Related papers (2022-02-22T01:42:57Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
We present a recipe for constructing gauge equivariant kernels, which induce vector-valued Gaussian processes coherent with geometry.
We extend standard Gaussian process training methods, such as variational inference, to this setting.
arXiv Detail & Related papers (2021-10-27T13:31:10Z) - Intrinsic Gaussian Processes on Manifolds and Their Accelerations by
Symmetry [9.773237080061815]
Existing methods primarily focus on low dimensional constrained domains for heat kernel estimation.
Our research proposes an intrinsic approach for constructing GP on general equations.
Our methodology estimates the heat kernel by simulating Brownian motion sample paths using the exponential map.
arXiv Detail & Related papers (2020-06-25T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.