REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics
- URL: http://arxiv.org/abs/2205.07852v1
- Date: Thu, 5 May 2022 16:20:37 GMT
- Title: REMuS-GNN: A Rotation-Equivariant Model for Simulating Continuum
Dynamics
- Authors: Mario Lino, Stati Fotiadis, Anil A. Bharath and Chris Cantwell
- Abstract summary: We introduce REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum dynamical systems.
We demonstrate and evaluate this method on the incompressible flow around elliptical cylinders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulation is an essential tool in many areas of science and
engineering, but its performance often limits application in practice or when
used to explore large parameter spaces. On the other hand, surrogate deep
learning models, while accelerating simulations, often exhibit poor accuracy
and ability to generalise. In order to improve these two factors, we introduce
REMuS-GNN, a rotation-equivariant multi-scale model for simulating continuum
dynamical systems encompassing a range of length scales. REMuS-GNN is designed
to predict an output vector field from an input vector field on a physical
domain discretised into an unstructured set of nodes. Equivariance to rotations
of the domain is a desirable inductive bias that allows the network to learn
the underlying physics more efficiently, leading to improved accuracy and
generalisation compared with similar architectures that lack such symmetry. We
demonstrate and evaluate this method on the incompressible flow around
elliptical cylinders.
Related papers
- Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators [12.165876595927452]
Universal Physics Transformers (UPTs) are efficient and unified learning paradigm for a wide range of problems.
UPTs operate without grid- or particle-based latent meshes, enabling flexibility across structures and particles.
We demonstrate diverse applicability and efficacy of UPTs in mesh-based fluid simulations, and steady-state Reynolds averaged Navier-Stokes simulations.
arXiv Detail & Related papers (2024-02-19T18:52:13Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling.
We propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance.
We design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.
arXiv Detail & Related papers (2023-01-21T05:14:29Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Hybrid Physical-Neural ODEs for Fast N-body Simulations [0.22419496088582863]
We present a new scheme to compensate for the small-scales approximations resulting from Particle-Mesh schemes for cosmological N-body simulations.
We find that our approach outperforms PGD for the cross-correlation coefficients, and is more robust to changes in simulation settings.
arXiv Detail & Related papers (2022-07-12T13:06:06Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.