All Things Considered: Detecting Partisan Events from News Media with
Cross-Article Comparison
- URL: http://arxiv.org/abs/2310.18827v1
- Date: Sat, 28 Oct 2023 21:53:23 GMT
- Title: All Things Considered: Detecting Partisan Events from News Media with
Cross-Article Comparison
- Authors: Yujian Liu, Xinliang Frederick Zhang, Kaijian Zou, Ruihong Huang, Nick
Beauchamp, Lu Wang
- Abstract summary: We develop a latent variable-based framework to predict the ideology of news articles.
Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship.
- Score: 19.328425822355378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Public opinion is shaped by the information news media provide, and that
information in turn may be shaped by the ideological preferences of media
outlets. But while much attention has been devoted to media bias via overt
ideological language or topic selection, a more unobtrusive way in which the
media shape opinion is via the strategic inclusion or omission of partisan
events that may support one side or the other. We develop a latent
variable-based framework to predict the ideology of news articles by comparing
multiple articles on the same story and identifying partisan events whose
inclusion or omission reveals ideology. Our experiments first validate the
existence of partisan event selection, and then show that article alignment and
cross-document comparison detect partisan events and article ideology better
than competitive baselines. Our results reveal the high-level form of media
bias, which is present even among mainstream media with strong norms of
objectivity and nonpartisanship. Our codebase and dataset are available at
https://github.com/launchnlp/ATC.
Related papers
- DocNet: Semantic Structure in Inductive Bias Detection Models [0.4779196219827508]
In this paper, we explore an often overlooked aspect of bias detection in documents: the semantic structure of news articles.
We present DocNet, a novel, inductive, and low-resource document embedding and bias detection model.
We also demonstrate that the semantic structure of news articles from opposing partisan sides, as represented in document-level graph embeddings, have significant similarities.
arXiv Detail & Related papers (2024-06-16T14:51:12Z) - Crossing the Aisle: Unveiling Partisan and Counter-Partisan Events in
News Reporting [7.8192232188516115]
We study to which degree media balances news reporting and affects consumers through event inclusion or omission.
We first introduce the task of detecting both partisan and counter-partisan events.
Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models.
arXiv Detail & Related papers (2023-10-28T17:50:13Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
We focus on the nuanced distinctions in framing of social media and traditional media outlets concerning a series of U.S. Supreme Court rulings.
We observe significant polarization in the news media's treatment of affirmative action and abortion rights, whereas the topic of student loans tends to exhibit a greater degree of consensus.
arXiv Detail & Related papers (2023-09-18T06:40:21Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
We first adopt a human-guided machine learning framework to develop a new dataset for hyperpartisan news title detection.
Overall the Right media tends to use proportionally more hyperpartisan titles.
We identify three major topics including foreign issues, political systems, and societal issues that are suggestive of hyperpartisanship in news titles.
arXiv Detail & Related papers (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
Knowing a news article's slant and authenticity is of crucial importance in times of "fake news"
We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL)
WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists"
arXiv Detail & Related papers (2021-05-20T11:20:37Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
We propose using the political diversity of a website's audience as a quality signal.
Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards.
arXiv Detail & Related papers (2020-07-16T02:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.