論文の概要: Debiasing Algorithm through Model Adaptation
- arxiv url: http://arxiv.org/abs/2310.18913v3
- Date: Fri, 15 Mar 2024 16:39:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 23:51:32.817856
- Title: Debiasing Algorithm through Model Adaptation
- Title(参考訳): モデル適応によるデバイアスアルゴリズム
- Authors: Tomasz Limisiewicz, David Mareček, Tomáš Musil,
- Abstract要約: 因果解析を行い、問題のあるモデル成分を同定し、フィードフォワードの中間層が最も偏りを伝達しやすいことを明らかにする。
解析結果に基づいて,これらの層の重み行列に線形射影を適用することにより,モデルに介入する。
提案手法であるDAMAは,下流タスクにおけるモデルの性能を維持しながら,様々な指標によって測定されるバイアスを著しく低減する。
- 参考スコア(独自算出の注目度): 5.482673673984126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models are becoming the go-to solution for the ever-growing number of tasks. However, with growing capacity, models are prone to rely on spurious correlations stemming from biases and stereotypes present in the training data. This work proposes a novel method for detecting and mitigating gender bias in language models. We perform causal analysis to identify problematic model components and discover that mid-upper feed-forward layers are most prone to convey bias. Based on the analysis results, we intervene in the model by applying a linear projection to the weight matrices of these layers. Our titular method, DAMA, significantly decreases bias as measured by diverse metrics while maintaining the model's performance on downstream tasks. We release code for our method and models, which retrain LLaMA's state-of-the-art performance while being significantly less biased.
- Abstract(参考訳): 大規模言語モデルは、ますます増え続けるタスクの解決策になりつつある。
しかし、能力の増大に伴い、モデルはトレーニングデータに存在するバイアスやステレオタイプから生じる急激な相関に依存する傾向にある。
本研究は,言語モデルにおけるジェンダーバイアスの検出と緩和のための新しい手法を提案する。
因果解析を行い、問題のあるモデル成分を同定し、フィードフォワードの中間層が最も偏りを伝達しやすいことを明らかにする。
解析結果に基づいて,これらの層の重み行列に線形射影を適用することにより,モデルに介入する。
提案手法であるDAMAは,下流タスクにおけるモデルの性能を維持しながら,様々な指標によって測定されるバイアスを著しく低減する。
我々はLLaMAの最先端性能を再訓練する手法とモデルのためのコードをリリースし、バイアスを著しく低減した。
関連論文リスト
- REFINE-LM: Mitigating Language Model Stereotypes via Reinforcement Learning [18.064064773660174]
本稿では、強化学習を用いて様々なバイアスを微調整せずに処理する脱バイアス法REFINE-LMを紹介する。
LMの単語確率分布の上に簡単なモデルをトレーニングすることにより、バイアス強化学習法により、人間のアノテーションを使わずにモデルの偏りを抑えることができる。
複数のLMを含む多種多様なモデルで行った実験により,本手法は,LMの性能を維持しながら,ステレオタイプバイアスを著しく低減することを示した。
論文 参考訳(メタデータ) (2024-08-18T14:08:31Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Parameter-efficient Modularised Bias Mitigation via AdapterFusion [22.424110883305243]
本稿では,モデルから分離したスタンドアロンデバイアス機能を開発するための新しい手法を提案する。
DAM - まず任意のバイアス緩和機能を個別のアダプタにカプセル化し、それをオンデマンドでモデルに追加するデバイアスのアプローチを紹介します。
以上の結果から,DAMはバイアス軽減の有効性を向上・維持し,マルチ属性シナリオでの忘れを回避し,タスク性能の維持を図っている。
論文 参考訳(メタデータ) (2023-02-13T12:39:45Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
データセットバイアスを緩和する既存のテクニックは、バイアス付きモデルを利用してバイアス付きインスタンスを識別することが多い。
これらの偏りのあるインスタンスの役割は、メインモデルのトレーニング中に減少し、アウト・オブ・ディストリビューションデータに対するロバスト性を高める。
本稿では,この仮定が一般には成り立たないことを示す。
論文 参考訳(メタデータ) (2021-09-01T10:25:46Z) - A Generative Approach for Mitigating Structural Biases in Natural
Language Inference [24.44419010439227]
本研究では、NLIタスクを生成タスクとして再構成し、モデルが入力とラベルのバイアス付きサブセットに条件付けされるようにする。
このアプローチは大量のバイアスに対して非常に堅牢であることを示す。
生成モデルは訓練が困難であり、識別ベースラインよりも一般的にはパフォーマンスが悪くなっている。
論文 参考訳(メタデータ) (2021-08-31T17:59:45Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。