Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals
- URL: http://arxiv.org/abs/2310.19005v2
- Date: Tue, 7 Nov 2023 11:12:31 GMT
- Title: Kernel-based Joint Multiple Graph Learning and Clustering of Graph
Signals
- Authors: Mohamad H. Alizade, Aref Einizade, and Jhony H. Giraldo
- Abstract summary: We introduce Kernel-based joint Multiple GL and clustering of graph signals applications.
Experiments demonstrate that KMGL significantly enhances the robustness of GL clustering, particularly in scenarios with high noise levels.
These findings underscore the potential of KMGL for improving the performance of Graph Signal Processing methods in diverse real-world applications.
- Score: 2.4305626489408465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the context of Graph Signal Processing (GSP), Graph Learning (GL) is
concerned with the inference of the graph's underlying structure from nodal
observations. However, real-world data often contains diverse information,
necessitating the simultaneous clustering and learning of multiple graphs. In
practical applications, valuable node-specific covariates, represented as
kernels, have been underutilized by existing graph signal clustering methods.
In this letter, we propose a new framework, named Kernel-based joint Multiple
GL and clustering of graph signals (KMGL), that leverages a multi-convex
optimization approach. This allows us to integrate node-side information,
construct low-pass filters, and efficiently solve the optimization problem. The
experiments demonstrate that KMGL significantly enhances the robustness of GL
and clustering, particularly in scenarios with high noise levels and a
substantial number of clusters. These findings underscore the potential of KMGL
for improving the performance of GSP methods in diverse, real-world
applications.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix [8.711977569042865]
Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2023-07-05T09:05:14Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - GLCC: A General Framework for Graph-level Clustering [5.069852282550117]
This paper studies the problem of graph-level clustering, which is a novel yet challenging task.
We propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC)
Experiments on a range of well-known datasets demonstrate the superiority of our proposed GLCC over competitive baselines.
arXiv Detail & Related papers (2022-10-21T11:08:10Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.