Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix
- URL: http://arxiv.org/abs/2307.02126v1
- Date: Wed, 5 Jul 2023 09:05:14 GMT
- Title: Robust Graph Structure Learning with the Alignment of Features and
Adjacency Matrix
- Authors: Shaogao Lv, Gang Wen, Shiyu Liu, Linsen Wei and Ming Li
- Abstract summary: Many approaches have been proposed for graph structure learning (GSL) to jointly learn a clean graph structure and corresponding representations.
This paper proposes a novel regularized GSL approach, particularly with an alignment of feature information and graph information.
We conduct experiments on real-world graphs to evaluate the effectiveness of our approach.
- Score: 8.711977569042865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To improve the robustness of graph neural networks (GNN), graph structure
learning (GSL) has attracted great interest due to the pervasiveness of noise
in graph data. Many approaches have been proposed for GSL to jointly learn a
clean graph structure and corresponding representations. To extend the previous
work, this paper proposes a novel regularized GSL approach, particularly with
an alignment of feature information and graph information, which is motivated
mainly by our derived lower bound of node-level Rademacher complexity for GNNs.
Additionally, our proposed approach incorporates sparse dimensional reduction
to leverage low-dimensional node features that are relevant to the graph
structure. To evaluate the effectiveness of our approach, we conduct
experiments on real-world graphs. The results demonstrate that our proposed GSL
method outperforms several competitive baselines, especially in scenarios where
the graph structures are heavily affected by noise. Overall, our research
highlights the importance of integrating feature and graph information
alignment in GSL, as inspired by our derived theoretical result, and showcases
the superiority of our approach in handling noisy graph structures through
comprehensive experiments on real-world datasets.
Related papers
- GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Structure Learning with Variational Information Bottleneck [70.62851953251253]
We propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL.
VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks.
arXiv Detail & Related papers (2021-12-16T14:22:13Z) - Deep Graph Structure Learning for Robust Representations: A Survey [20.564611153151834]
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data.
To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning.
arXiv Detail & Related papers (2021-03-04T13:49:25Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.