Atom: Low-bit Quantization for Efficient and Accurate LLM Serving
- URL: http://arxiv.org/abs/2310.19102v3
- Date: Tue, 16 Apr 2024 06:08:05 GMT
- Title: Atom: Low-bit Quantization for Efficient and Accurate LLM Serving
- Authors: Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, Baris Kasikci,
- Abstract summary: We introduce Atom, a low-bit quantization method that achieves high throughput improvements with negligible accuracy loss.
Atom significantly boosts serving by using low-bit operators and considerably reduces memory consumption via low-bit quantization.
- Score: 7.126191142715184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for Large Language Models (LLMs) in applications such as content generation, intelligent chatbots, and sentiment analysis poses considerable challenges for LLM service providers. To efficiently use GPU resources and boost throughput, batching multiple requests has emerged as a popular paradigm; to further speed up batching, LLM quantization techniques reduce memory consumption and increase computing capacity. However, prevalent quantization schemes (e.g., 8-bit weight-activation quantization) cannot fully leverage the capabilities of modern GPUs, such as 4-bit integer operators, resulting in sub-optimal performance. To maximize LLMs' serving throughput, we introduce Atom, a low-bit quantization method that achieves high throughput improvements with negligible accuracy loss. Atom significantly boosts serving throughput by using low-bit operators and considerably reduces memory consumption via low-bit quantization. It attains high accuracy by applying a novel mixed-precision and fine-grained quantization process. We evaluate Atom on 4-bit weight-activation quantization in the serving context. Atom improves end-to-end throughput (token/s) by up to $7.7\times$ compared to the FP16 and by $2.5\times$ compared to INT8 quantization, while maintaining the same latency target.
Related papers
- MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
This paper describes the design of Mixed-precision AutoRegressive LINear kernels.
It shows that batchsizes up to 16-32 can be supported with close to maximum ($4times$) quantization speedup.
MarLIN accomplishes this via a combination of techniques, such as asynchronous memory access, complex task scheduling and pipelining.
arXiv Detail & Related papers (2024-08-21T16:10:41Z) - ABQ-LLM: Arbitrary-Bit Quantized Inference Acceleration for Large Language Models [9.444063879246242]
We introduce a novel arbitrary-bit quantization algorithm and inference framework, ABQ-LLM.
It achieves superior performance across various quantization settings and enables efficient arbitrary-precision quantized inference on the GPU.
arXiv Detail & Related papers (2024-08-16T06:39:08Z) - QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving [52.31791050376249]
Quantization can accelerate large language model (LLM) inference.
Existing INT4 quantization methods suffer from significant runtime overhead when dequantizing weights or partial sums.
We introduce QoQ, a W4A8KV4 quantization algorithm with 4-bit weight, 8-bit activation, and 4-bit KV cache.
QServe improves the maximum achievable serving of Llama-3-8B by 1.2x on A100, 1.4x on L40S; and Qwen-721.5B by 2.4x on A100, 3.5x on L40S.
arXiv Detail & Related papers (2024-05-07T17:59:30Z) - FlattenQuant: Breaking Through the Inference Compute-bound for Large
Language Models with Per-tensor Quantization [6.931020818874328]
We introduce a method called FlattenQuant, which significantly reduces the maximum value of the tensor by flattening the large channels in the tensor, to achieve low bit per-tensor quantization with minimal accuracy loss.
Our work achieves up to 2$times$ speedup and 2.3$times$ memory reduction for LLMs with negligible loss in accuracy.
arXiv Detail & Related papers (2024-02-28T02:00:34Z) - Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM [6.85331857224501]
Large Language Models (LLMs) pose significant hardware challenges related to memory requirements and computational ability.
There are two mainstream quantization schemes for LLMs: coarse-grained ($textite.g.,$ channel-wise) quantization and fine-grained ($textite.g.,$ group-wise) quantization.
We introduce Dual Grained Quantization (DGQ), a novel A8W4 quantization for LLM that maintains superior performance while ensuring fast inference speed.
arXiv Detail & Related papers (2023-10-07T14:50:28Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
Large language models (LLMs) have revolutionized natural language processing tasks.
Recent post-training quantization (PTQ) methods are effective in reducing memory footprint and improving the computational efficiency of LLM.
We introduce an Omnidirectionally calibrated Quantization technique for LLMs, which achieves good performance in diverse quantization settings.
arXiv Detail & Related papers (2023-08-25T02:28:35Z) - DeepGEMM: Accelerated Ultra Low-Precision Inference on CPU Architectures
using Lookup Tables [49.965024476651706]
DeepGEMM is a lookup table based approach for the execution of ultra low-precision convolutional neural networks on SIMD hardware.
Our implementation outperforms corresponding 8-bit integer kernels by up to 1.74x on x86 platforms.
arXiv Detail & Related papers (2023-04-18T15:13:10Z) - Leveraging Automated Mixed-Low-Precision Quantization for tiny edge
microcontrollers [76.30674794049293]
This paper presents an automated mixed-precision quantization flow based on the HAQ framework but tailored for the memory and computational characteristics of MCU devices.
Specifically, a Reinforcement Learning agent searches for the best uniform quantization levels, among 2, 4, 8 bits, of individual weight and activation tensors.
Given an MCU-class memory bound to 2MB for weight-only quantization, the compressed models produced by the mixed-precision engine result as accurate as the state-of-the-art solutions.
arXiv Detail & Related papers (2020-08-12T06:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.