論文の概要: Poisoning Retrieval Corpora by Injecting Adversarial Passages
- arxiv url: http://arxiv.org/abs/2310.19156v1
- Date: Sun, 29 Oct 2023 21:13:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 13:58:24.858693
- Title: Poisoning Retrieval Corpora by Injecting Adversarial Passages
- Title(参考訳): 逆行路注入による中毒検索コーパス
- Authors: Zexuan Zhong, Ziqing Huang, Alexander Wettig, Danqi Chen
- Abstract要約: 本稿では,悪意のあるユーザが少数の逆行を発生させるような,高密度検索システムに対する新たな攻撃を提案する。
これらの逆行路を大規模な検索コーパスに挿入すると、この攻撃はこれらのシステムを騙すのに非常に効果的であることを示す。
また、教師なしと教師なしの両方の最先端の高密度レトリバーをベンチマークし、比較する。
- 参考スコア(独自算出の注目度): 79.14287273842878
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense retrievers have achieved state-of-the-art performance in various
information retrieval tasks, but to what extent can they be safely deployed in
real-world applications? In this work, we propose a novel attack for dense
retrieval systems in which a malicious user generates a small number of
adversarial passages by perturbing discrete tokens to maximize similarity with
a provided set of training queries. When these adversarial passages are
inserted into a large retrieval corpus, we show that this attack is highly
effective in fooling these systems to retrieve them for queries that were not
seen by the attacker. More surprisingly, these adversarial passages can
directly generalize to out-of-domain queries and corpora with a high success
attack rate -- for instance, we find that 50 generated passages optimized on
Natural Questions can mislead >94% of questions posed in financial documents or
online forums. We also benchmark and compare a range of state-of-the-art dense
retrievers, both unsupervised and supervised. Although different systems
exhibit varying levels of vulnerability, we show they can all be successfully
attacked by injecting up to 500 passages, a small fraction compared to a
retrieval corpus of millions of passages.
- Abstract(参考訳): デンスレトリバーは様々な情報検索タスクで最先端のパフォーマンスを達成したが、実際のアプリケーションに安全にデプロイできる範囲はどの程度あるのか?
本研究では,悪意のあるユーザが個別のトークンを摂り込み,与えられたトレーニングクエリのセットと類似性を最大化することにより,少数の逆パスを発生させる,高密度検索システムに対する新たな攻撃を提案する。
これらの逆通路を大規模な検索コーパスに挿入すると,攻撃者が見なかったクエリに対して,これらのシステムを騙して検索する上で,この攻撃が極めて効果的であることが分かる。
さらに驚くべきことに、これらの逆行はドメイン外のクエリやコーパスに直接一般化して、高い攻撃率で実行することが可能です。例えば、Nature Questionsに最適化された50の生成されたパスは、財務文書やオンラインフォーラムで提起された質問の94%を誤解させる可能性があるのです。
また、教師なしと教師なしの両方の最先端の高密度検索をベンチマークし比較する。
異なるシステムは様々なレベルの脆弱性を示すが、最大500のパスを注入することで、数百万のパスの検索コーパスと比較して、攻撃に成功できることを示す。
関連論文リスト
- Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - Document Screenshot Retrievers are Vulnerable to Pixel Poisoning Attacks [72.4498910775871]
ヴィジュアル言語モデル(VLM)ベースのレトリバーは、ベクターとして埋め込まれた文書のスクリーンショットを活用して、効率的な検索を可能にし、従来のテキストのみの手法よりも単純化されたパイプラインを提供する。
本研究では,VLMをベースとしたレトリバーを危険にさらすために,3つのピクセル中毒攻撃手法を提案する。
論文 参考訳(メタデータ) (2025-01-28T12:40:37Z) - Backdoored Retrievers for Prompt Injection Attacks on Retrieval Augmented Generation of Large Language Models [0.0]
Retrieval Augmented Generation (RAG)は、大規模言語モデルと最新の情報検索を組み合わせることでこの問題に対処する。
本稿では、誤報以外の有害な目的に焦点をあて、RAGに対する即時注射攻撃について検討する。
我々は,既存のコーパス中毒技術を構築し,高密度レトリバー部品の微調整を目的とした新しいバックドアアタックを提案する。
論文 参考訳(メタデータ) (2024-10-18T14:02:34Z) - Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
本稿では,HotFlip法をベースとした高密度検索システムに対する新たな攻撃手法として,近似グレディ・グラディエント・Descentを提案する。
提案手法は,複数のデータセットと複数のレトリバーを用いて高い攻撃成功率を達成し,未知のクエリや新しいドメインに一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-06-07T17:02:35Z) - Whispers in Grammars: Injecting Covert Backdoors to Compromise Dense Retrieval Systems [40.131588857153275]
本稿では,攻撃者が検索システムを誤認して攻撃者の特定内容を検索する新たな攻撃シナリオについて検討する。
これらのコンテンツは、攻撃者によって検索コーパスに注入され、ヘイトスピーチやスパムのような有害なテキストを含むことができる。
モデル重みに頼り、顕著で不自然な出力を生成する従来の手法とは異なり、文法エラーによって引き起こされる隠れたバックドア攻撃を提案する。
論文 参考訳(メタデータ) (2024-02-21T05:03:07Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。