論文の概要: Adapter Pruning using Tropical Characterization
- arxiv url: http://arxiv.org/abs/2310.19232v1
- Date: Mon, 30 Oct 2023 02:20:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 13:33:56.340335
- Title: Adapter Pruning using Tropical Characterization
- Title(参考訳): 熱帯キャラクタリゼーションを用いたアダプタプラニング
- Authors: Rishabh Bhardwaj, Tushar Vaidya, Soujanya Poria
- Abstract要約: 本稿では,訓練可能なモジュールの熱帯特性を解析し,アダプタ・プルーニング手法を提案する。
5つのNLPデータセットを用いた実験により, 熱帯の地形は, マグニチュードベースラインと比較した場合, より関連性の高いパラメータを同定する傾向を示した。
- 参考スコア(独自算出の注目度): 28.82742414977176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapters are widely popular parameter-efficient transfer learning approaches
in natural language processing that insert trainable modules in between layers
of a pre-trained language model. Apart from several heuristics, however, there
has been a lack of studies analyzing the optimal number of adapter parameters
needed for downstream applications. In this paper, we propose an adapter
pruning approach by studying the tropical characteristics of trainable modules.
We cast it as an optimization problem that aims to prune parameters from the
adapter layers without changing the orientation of underlying tropical
hypersurfaces. Our experiments on five NLP datasets show that tropical geometry
tends to identify more relevant parameters to prune when compared with the
magnitude-based baseline, while a combined approach works best across the
tasks.
- Abstract(参考訳): アダプタは、訓練済み言語モデルの層間にトレーニング可能なモジュールを挿入する自然言語処理において、パラメータ効率のよい伝達学習アプローチとして広く普及している。
しかし、いくつかのヒューリスティックな研究とは別に、下流アプリケーションに必要なアダプタパラメータの最適な数を分析する研究が不足している。
本稿では,訓練可能なモジュールの熱帯特性を解析し,アダプタプルーニング手法を提案する。
我々は,熱帯超曲面の配向を変化させることなく,アダプタ層からパラメータを抽出することを目的とした最適化問題とみなした。
5つのnlpデータセットを用いた実験により、熱帯幾何学は、マグニチュードベースのベースラインと比較すると、pruneの関連するパラメータを識別しがちであることが示された。
関連論文リスト
- Towards Optimal Adapter Placement for Efficient Transfer Learning [73.1149084352343]
PETLは、トレーニング済みモデルを新しい下流タスクに適用し、微調整されたパラメータの数を最小化することを目的としている。
PETLの一般的なアプローチであるアダプタは、低ランクのプロジェクションを組み込むことで、既存のネットワークにさらなる容量を注入する。
本稿では,アダプタの配置と性能の関係について検討する。
論文 参考訳(メタデータ) (2024-10-21T10:37:17Z) - On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy [5.359060261460183]
言語モデルの低ランクタスク適応(LoRAやFLoRAなど)が提案されている。
データプライバシのレンズからの低ランク適応に注目します。
他の既存の微調整アルゴリズムとは異なり、低ランク適応は暗黙的に微調整データのプライバシーを提供する。
論文 参考訳(メタデータ) (2024-09-26T04:56:49Z) - Hadamard Adapter: An Extreme Parameter-Efficient Adapter Tuning Method for Pre-trained Language Models [108.08773541490191]
事前訓練された言語モデル(PLM)は大量のパラメータを持ち、微調整は高価で時間を要することが多い。
ダウンストリームタスクにおける性能を損なうことなく、微調整時にPLMのパラメータを減らすためのパラメータ効率のアプローチを採用する必要がある。
本稿では, PLMにおける自己注意出力のみに作用する新しいアダプタを設計する。
論文 参考訳(メタデータ) (2024-07-04T18:21:28Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
本研究では,UniPELTフレームワークをベースとした新しい適応手法を提案する。
提案手法では, ベースモデルパラメータの最小限の再学習を行うことなく, 事前学習したモデルを新しいタスクに効率的に転送できるアダプタを用いる。
論文 参考訳(メタデータ) (2024-05-09T01:40:38Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
ポイントクラウド分析は、事前訓練されたモデルのポイントクラウドの転送によって、優れたパフォーマンスを実現している。
モデル適応のための既存の方法は通常、高い計算コストに依存するため、非効率な全てのモデルパラメータを更新する。
本稿では,タスク性能とパラメータ効率のトレードオフを考慮した,ポイントクラウド解析のためのパラメータ効率変換学習を提案する。
論文 参考訳(メタデータ) (2024-03-03T08:25:04Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA)は、アダプタチューニングとハイパーネットワーク上に構築された新しいフレームワークである。
サンプル効率のよい条件付きモジュールを生成するために、インスタンスdenseレトリバーとプロトタイプのハイパーネットワークを導入する。
PHAは、トレーニング可能なパラメータ、ストリームタスクの精度、サンプル効率のトレードオフをより良くすることを示す。
論文 参考訳(メタデータ) (2023-10-18T02:42:17Z) - Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing [8.88477151877883]
高容量事前学習モデルはコンピュータビジョンにおける問題解決に革命をもたらした。
本稿では,効率的な事前学習モデル適応に対処する新しい適応型再コンパイル(ARC)戦略を提案する。
提案手法は適応パラメータの再利用可能性について考察し,パラメータ共有方式を提案する。
論文 参考訳(メタデータ) (2023-10-10T01:04:15Z) - AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large
Language Models [119.7093605087114]
大規模なトレーニング済み言語モデルをダウンストリームタスクに微調整するには、数億のパラメータを更新する必要がある。
これにより、各タスクのモデルの重みの大量コピーを格納するためのサービスコストが増大するだけでなく、数発のタスク適応中に不安定を示す。
パラメータや計算コストを2つの重要な手法で増大させることなく、アダプタ容量を改善するための新しいメカニズムを導入する。
論文 参考訳(メタデータ) (2022-05-24T23:41:22Z) - AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks [55.705355299065474]
数百万のパラメータを持つトランスフォーマーベースの事前学習モデルは、大きなストレージを必要とする。
近年のアプローチでは、アダプタをトレーニングすることでこの欠点に対処しているが、それでも比較的多くのパラメータを必要とする。
本研究では,驚くほどシンプルで効果的なアダプタアーキテクチャであるAdapterBiasを提案する。
論文 参考訳(メタデータ) (2022-04-30T16:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。