A Metadata-Driven Approach to Understand Graph Neural Networks
- URL: http://arxiv.org/abs/2310.19263v1
- Date: Mon, 30 Oct 2023 04:25:02 GMT
- Title: A Metadata-Driven Approach to Understand Graph Neural Networks
- Authors: Ting Wei Li, Qiaozhu Mei, Jiaqi Ma
- Abstract summary: We propose a $textitmetadata-driven$ approach to analyze the sensitivity of GNNs to graph data properties.
Our theoretical findings reveal that datasets with more balanced degree distribution exhibit better linear separability of node representations.
- Score: 17.240017543449735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved remarkable success in various
applications, but their performance can be sensitive to specific data
properties of the graph datasets they operate on. Current literature on
understanding the limitations of GNNs has primarily employed a
$\textit{model-driven}$ approach that leverage heuristics and domain knowledge
from network science or graph theory to model the GNN behaviors, which is
time-consuming and highly subjective. In this work, we propose a
$\textit{metadata-driven}$ approach to analyze the sensitivity of GNNs to graph
data properties, motivated by the increasing availability of graph learning
benchmarks. We perform a multivariate sparse regression analysis on the
metadata derived from benchmarking GNN performance across diverse datasets,
yielding a set of salient data properties. To validate the effectiveness of our
data-driven approach, we focus on one identified data property, the degree
distribution, and investigate how this property influences GNN performance
through theoretical analysis and controlled experiments. Our theoretical
findings reveal that datasets with more balanced degree distribution exhibit
better linear separability of node representations, thus leading to better GNN
performance. We also conduct controlled experiments using synthetic datasets
with varying degree distributions, and the results align well with our
theoretical findings. Collectively, both the theoretical analysis and
controlled experiments verify that the proposed metadata-driven approach is
effective in identifying critical data properties for GNNs.
Related papers
- Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance [0.5416466085090772]
We introduce a comprehensive benchmarking framework for graph machine learning.
We generate synthetic networks with realistic topological properties and node feature vectors.
Results highlight the dependency of model performance on the interplay between network structure and node features.
arXiv Detail & Related papers (2024-06-04T20:40:06Z) - Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
A new research problem, online GNN evaluation, aims to provide valuable insights into the well-trained GNNs's ability to generalize to real-world unlabeled graphs.
We develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models.
arXiv Detail & Related papers (2024-03-15T01:28:08Z) - Rethinking Causal Relationships Learning in Graph Neural Networks [24.7962807148905]
We introduce a lightweight and adaptable GNN module designed to strengthen GNNs' causal learning capabilities.
We empirically validate the effectiveness of the proposed module.
arXiv Detail & Related papers (2023-12-15T08:54:32Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Global Minima, Recoverability Thresholds, and Higher-Order Structure in
GNNS [0.0]
We analyze the performance of graph neural network (GNN) architectures from the perspective of random graph theory.
We show how both specific higher-order structures in synthetic data and the mix of empirical structures in real data have dramatic effects on GNN performance.
arXiv Detail & Related papers (2023-10-11T17:16:33Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Towards a Taxonomy of Graph Learning Datasets [10.151886932716518]
Graph neural networks (GNNs) have attracted much attention due to their ability to leverage the intrinsic geometries of the underlying data.
Here, we provide a principled approach to taxonomize graph benchmarking datasets by carefully designing a collection of graph perturbations.
Our data-driven taxonomization of graph datasets provides a new understanding of critical dataset characteristics.
arXiv Detail & Related papers (2021-10-27T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.