Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance
- URL: http://arxiv.org/abs/2406.02772v1
- Date: Tue, 4 Jun 2024 20:40:06 GMT
- Title: Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance
- Authors: Roya Aliakbarisani, Robert Jankowski, M. Ángeles Serrano, Marián Boguñá,
- Abstract summary: We introduce a comprehensive benchmarking framework for graph machine learning.
We generate synthetic networks with realistic topological properties and node feature vectors.
Results highlight the dependency of model performance on the interplay between network structure and node features.
- Score: 0.5416466085090772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have excelled in predicting graph properties in various applications ranging from identifying trends in social networks to drug discovery and malware detection. With the abundance of new architectures and increased complexity, GNNs are becoming highly specialized when tested on a few well-known datasets. However, how the performance of GNNs depends on the topological and features properties of graphs is still an open question. In this work, we introduce a comprehensive benchmarking framework for graph machine learning, focusing on the performance of GNNs across varied network structures. Utilizing the geometric soft configuration model in hyperbolic space, we generate synthetic networks with realistic topological properties and node feature vectors. This approach enables us to assess the impact of network properties, such as topology-feature correlation, degree distributions, local density of triangles (or clustering), and homophily, on the effectiveness of different GNN architectures. Our results highlight the dependency of model performance on the interplay between network structure and node features, providing insights for model selection in various scenarios. This study contributes to the field by offering a versatile tool for evaluating GNNs, thereby assisting in developing and selecting suitable models based on specific data characteristics.
Related papers
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
We decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance.
We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models.
arXiv Detail & Related papers (2021-11-12T14:53:22Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
We introduce several key design strategies for graph neural networks.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN)
We show that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks.
arXiv Detail & Related papers (2021-05-17T06:46:01Z) - Graph Neural Networks Including Sparse Interpretability [0.0]
We present a model-agnostic framework for interpreting important graph structure and node features.
Our GISST models achieve superior node feature and edge explanation precision in synthetic datasets.
arXiv Detail & Related papers (2020-06-30T21:35:55Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.