EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing
Image Super-Resolution
- URL: http://arxiv.org/abs/2310.19288v1
- Date: Mon, 30 Oct 2023 06:09:33 GMT
- Title: EDiffSR: An Efficient Diffusion Probabilistic Model for Remote Sensing
Image Super-Resolution
- Authors: Yi Xiao, Qiangqiang Yuan, Kui Jiang, Jiang He, Xianyu Jin, and
Liangpei Zhang
- Abstract summary: convolutional networks have achieved remarkable development in remote sensing image Super-Resoltuion (SR)
Generative adversarial networks have the potential to infer intricate details, but they are easy to collapse, resulting in undesirable artifacts.
EDiffSR is easy to train and maintains the merits of DPM in generating perceptual-pleasant images.
- Score: 32.956539422513416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, convolutional networks have achieved remarkable development in
remote sensing image Super-Resoltuion (SR) by minimizing the regression
objectives, e.g., MSE loss. However, despite achieving impressive performance,
these methods often suffer from poor visual quality with over-smooth issues.
Generative adversarial networks have the potential to infer intricate details,
but they are easy to collapse, resulting in undesirable artifacts. To mitigate
these issues, in this paper, we first introduce Diffusion Probabilistic Model
(DPM) for efficient remote sensing image SR, dubbed EDiffSR. EDiffSR is easy to
train and maintains the merits of DPM in generating perceptual-pleasant images.
Specifically, different from previous works using heavy UNet for noise
prediction, we develop an Efficient Activation Network (EANet) to achieve
favorable noise prediction performance by simplified channel attention and
simple gate operation, which dramatically reduces the computational budget.
Moreover, to introduce more valuable prior knowledge into the proposed EDiffSR,
a practical Conditional Prior Enhancement Module (CPEM) is developed to help
extract an enriched condition. Unlike most DPM-based SR models that directly
generate conditions by amplifying LR images, the proposed CPEM helps to retain
more informative cues for accurate SR. Extensive experiments on four remote
sensing datasets demonstrate that EDiffSR can restore visual-pleasant images on
simulated and real-world remote sensing images, both quantitatively and
qualitatively. The code of EDiffSR will be available at
https://github.com/XY-boy/EDiffSR
Related papers
- Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSR achieves superior objective metrics and visual quality compared to the state-of-the-art SR methods.
It reduces the inference time of diffusion-based SR methods to a level comparable to that of non-diffusion methods.
arXiv Detail & Related papers (2024-10-30T09:14:13Z) - RSHazeDiff: A Unified Fourier-aware Diffusion Model for Remote Sensing Image Dehazing [32.16602874389847]
Haze severely degrades the visual quality of remote sensing images.
We propose a novel unified Fourier-aware diffusion model for remote sensing image dehazing, termed RSHazeDiff.
Experiments on both synthetic and real-world benchmarks validate the favorable performance of RSHazeDiff over state-of-the-art methods.
arXiv Detail & Related papers (2024-05-15T04:22:27Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit.
Existing methods confront challenges in recovering SR images with clear textures and correct ground objects.
We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution.
arXiv Detail & Related papers (2024-05-11T16:06:16Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations.
We propose an Iterative Token Evaluation and Refinement framework for RWSR.
We show that ITER is easier to train than Generative Adversarial Networks (GANs) and more efficient than continuous diffusion models.
arXiv Detail & Related papers (2023-12-09T17:07:32Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
We propose a novel blind SR framework based on the normalizing flow (BlindSRSNF) to address the above problems.
BlindSRSNF learns the conditional probability distribution over the high-resolution image space given a low-resolution (LR) image by explicitly optimizing the variational bound on the likelihood.
We show that the proposed algorithm can obtain SR results with excellent visual perception quality on both simulated LR and real-world RSIs.
arXiv Detail & Related papers (2022-10-14T12:37:32Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
Single image super-resolution (SISR) aims to reconstruct high-resolution (HR) images from the given low-resolution (LR) ones.
We propose a novel single image super-resolution diffusion probabilistic model (SRDiff)
SRDiff is optimized with a variant of the variational bound on the data likelihood and can provide diverse and realistic SR predictions.
arXiv Detail & Related papers (2021-04-30T12:31:25Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - EventSR: From Asynchronous Events to Image Reconstruction, Restoration,
and Super-Resolution via End-to-End Adversarial Learning [75.17497166510083]
Event cameras sense intensity changes and have many advantages over conventional cameras.
Some methods have been proposed to reconstruct intensity images from event streams.
The outputs are still in low resolution (LR), noisy, and unrealistic.
We propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR.
arXiv Detail & Related papers (2020-03-17T10:58:10Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.