論文の概要: Analyzing eyebrow region for morphed image detection
- arxiv url: http://arxiv.org/abs/2310.19290v1
- Date: Mon, 30 Oct 2023 06:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 23:51:32.812447
- Title: Analyzing eyebrow region for morphed image detection
- Title(参考訳): 形態的画像検出のための視線領域の解析
- Authors: Abdullah Zafar, Christoph Busch,
- Abstract要約: 提案手法は,眼窩領域の周波数を解析することに基づく。
以上の結果から,本手法は画像の変形検出に有用なツールである可能性が示唆された。
- 参考スコア(独自算出の注目度): 4.879461135691896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facial images in passports are designated as primary identifiers for the verification of travelers according to the International Civil Aviation Organization (ICAO). Hence, it is important to ascertain the sanctity of the facial images stored in the electronic Machine-Readable Travel Document (eMRTD). With the introduction of automated border control (ABC) systems that rely on face recognition for the verification of travelers, it is even more crucial to have a system to ensure that the image stored in the eMRTD is free from any alteration that can hinder or abuse the normal working of a facial recognition system. One such attack against these systems is the face-morphing attack. Even though many techniques exist to detect morphed images, morphing algorithms are also improving to evade these detections. In this work, we analyze the eyebrow region for morphed image detection. The proposed method is based on analyzing the frequency content of the eyebrow region. The method was evaluated on two datasets that each consisted of morphed images created using two algorithms. The findings suggest that the proposed method can serve as a valuable tool in morphed image detection, and can be used in various applications where image authenticity is critical.
- Abstract(参考訳): 国際民間航空機関(ICAO)によると、パスポートの顔画像は旅行者の確認のための主要な識別子として指定されている。
したがって、eMRTD(Electronic Machine-Readable Travel Document)に格納されている顔画像の正当性を確認することが重要である。
自動境界制御(ABC)システムの導入により,eMRTDに格納された画像が正常な顔認証システムの動作を妨げたり悪用したりするような変化を防止できるようなシステムを実現することがさらに重要である。
このようなシステムに対する攻撃の1つは、顔変形攻撃である。
モーフィング画像を検出する技術は数多く存在するが、モーフィングアルゴリズムもこれらの検出を避けるために改善されている。
そこで本研究では,形態的画像検出のためのアイブロウ領域を解析する。
提案手法は,眼窩領域の周波数を解析することに基づく。
この手法は2つのデータセットで評価され,それぞれが2つのアルゴリズムを用いて生成した形態素画像から成っている。
提案手法は画像検出に有用なツールであり,画像の信頼性が重要となる様々なアプリケーションに適用可能であることが示唆された。
関連論文リスト
- Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Face Morphing Attack Detection Using Privacy-Aware Training Data [0.991629944808926]
顔の形をした画像は、顔認識ベースのセキュリティシステムに深刻な脅威をもたらす。
現代の検出アルゴリズムは、実際の人物の認証画像を用いて、このような形態的攻撃を識別する。
このアプローチは、さまざまなプライバシー上の懸念を提起し、公開されているトレーニングデータの量を制限する。
論文 参考訳(メタデータ) (2022-07-02T19:00:48Z) - Psychophysical Evaluation of Human Performance in Detecting Digital Face
Image Manipulations [14.63266615325105]
この研究は、心理物理学の分野から採用された原則に基づいて、Webベースの遠隔視覚的識別実験を導入する。
本研究では,顔のスワップ,フォーミング,リタッチなど,さまざまな種類の顔画像を検出する能力について検討する。
論文 参考訳(メタデータ) (2022-01-28T12:45:33Z) - Single Morphing Attack Detection using Feature Selection and
Visualisation based on Mutual Information [13.725021925072603]
本稿では, 強度, 形状, テクスチャから抽出した特徴を探索し, 相互情報フィルタに基づく特徴選択ステージを提案する。
目と鼻は、分析される最も重要な領域として識別される。
論文 参考訳(メタデータ) (2021-10-26T10:27:06Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
本稿では,顔画像の認識可能性の尺度を提案し,主に認識可能なアイデンティティを用いて訓練されたディープニューラルネットワークによって実現された。
FAR=1e-5において,認識可能性を考慮した場合,単画像認識の誤り率を58%減少させることを示す。
論文 参考訳(メタデータ) (2021-06-08T05:25:03Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - Face Morphing Attack Generation & Detection: A Comprehensive Survey [12.936155415524937]
顔認識システム (FRS) はバイオメトリック・コミュニティから大きな関心を集めている。
モーフィング攻撃の目標は、自動境界制御ゲートでFRSを反転させることである。
悪質な俳優及び共犯者は、変形した顔画像を生成して、eパスポートを得ることができる。
論文 参考訳(メタデータ) (2020-11-03T22:36:27Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
単一画像における顔のスワップやその他のアイデンティティ操作を検出する手法を提案する。
提案手法は, (i) 厳密なセマンティックセグメンテーションによって境界付けられた顔領域を考慮した顔識別ネットワークと, (ii) 顔コンテキストを考慮したコンテキスト認識ネットワークの2つのネットワークを含む。
本稿では,2つのネットワークからの認識信号を用いて,そのような不一致を検出する手法について述べる。
提案手法は,FaceForensics++,Celeb-DF-v2,DFDCベンチマークを用いて顔検出を行い,未知の手法で生成した偽物の検出を一般化する。
論文 参考訳(メタデータ) (2020-08-27T17:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。