TempME: Towards the Explainability of Temporal Graph Neural Networks via
Motif Discovery
- URL: http://arxiv.org/abs/2310.19324v1
- Date: Mon, 30 Oct 2023 07:51:41 GMT
- Title: TempME: Towards the Explainability of Temporal Graph Neural Networks via
Motif Discovery
- Authors: Jialin Chen, Rex Ying
- Abstract summary: We propose TempME, which uncovers the most pivotal temporal motifs guiding the prediction of temporal graph neural networks (TGNNs)
TempME extracts the most interaction-related motifs while minimizing the amount of contained information to preserve the sparsity and succinctness of the explanation.
Experiments validate the superiority of TempME, with up to 8.21% increase in terms of explanation accuracy across six real-world datasets and up to 22.96% increase in boosting the prediction Average Precision of current TGNNs.
- Score: 15.573944320072284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal graphs are widely used to model dynamic systems with time-varying
interactions. In real-world scenarios, the underlying mechanisms of generating
future interactions in dynamic systems are typically governed by a set of
recurring substructures within the graph, known as temporal motifs. Despite the
success and prevalence of current temporal graph neural networks (TGNN), it
remains uncertain which temporal motifs are recognized as the significant
indications that trigger a certain prediction from the model, which is a
critical challenge for advancing the explainability and trustworthiness of
current TGNNs. To address this challenge, we propose a novel approach, called
Temporal Motifs Explainer (TempME), which uncovers the most pivotal temporal
motifs guiding the prediction of TGNNs. Derived from the information bottleneck
principle, TempME extracts the most interaction-related motifs while minimizing
the amount of contained information to preserve the sparsity and succinctness
of the explanation. Events in the explanations generated by TempME are verified
to be more spatiotemporally correlated than those of existing approaches,
providing more understandable insights. Extensive experiments validate the
superiority of TempME, with up to 8.21% increase in terms of explanation
accuracy across six real-world datasets and up to 22.96% increase in boosting
the prediction Average Precision of current TGNNs.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
We present DyExplainer, a novel approach to explaining dynamic Graph Neural Networks (GNNs) on the fly.
DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot.
We also augment our approach with contrastive learning techniques to provide priori-guided regularization.
arXiv Detail & Related papers (2023-10-25T05:26:33Z) - Re-Temp: Relation-Aware Temporal Representation Learning for Temporal
Knowledge Graph Completion [11.699431017532367]
Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting aims to predict the missing entity from a fact in the future.
We propose our model, Re-Temp, which leverages explicit temporal embedding as input and incorporates skip information flow after each timestamp to skip unnecessary information for prediction.
We demonstrate that our model outperforms all eight recent state-of-the-art models by a significant margin.
arXiv Detail & Related papers (2023-10-24T10:58:33Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Learning to Sample and Aggregate: Few-shot Reasoning over Temporal
Knowledge Graphs [13.230166885504202]
We investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning.
It aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs.
We propose a novel Meta Temporal Knowledge Graph Reasoning framework.
arXiv Detail & Related papers (2022-10-16T22:40:33Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
We propose a Temporal Enhanced Graph Convolutional Network (TE-GCN) to capture complex temporal dynamic.
The constructed temporal relation graph explicitly builds connections between semantically related temporal features.
Experiments are performed on two widely used large-scale datasets.
arXiv Detail & Related papers (2020-12-16T09:02:47Z) - TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative
Models [9.75258136573147]
We propose a new model, called Temporal Graph Generative Adversarial Network'' (TG-GAN) for continuous-time temporal graph generation.
We first propose a novel temporal graph generator that jointly model truncated edge sequences, time budgets, and node attributes.
In addition, a new temporal graph discriminator is proposed, which combines time and node encoding operations over a recurrent architecture to distinguish the generated sequences.
arXiv Detail & Related papers (2020-05-17T17:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.