FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective
- URL: http://arxiv.org/abs/2311.06190v1
- Date: Fri, 10 Nov 2023 17:13:26 GMT
- Title: FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective
- Authors: Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An,
Longbing Cao, Zhendong Niu
- Abstract summary: Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
- Score: 48.00240550685946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series (MTS) forecasting has shown great importance in
numerous industries. Current state-of-the-art graph neural network (GNN)-based
forecasting methods usually require both graph networks (e.g., GCN) and
temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and
intra-series (temporal) dependencies, respectively. However, the uncertain
compatibility of the two networks puts an extra burden on handcrafted model
designs. Moreover, the separate spatial and temporal modeling naturally
violates the unified spatiotemporal inter-dependencies in real world, which
largely hinders the forecasting performance. To overcome these problems, we
explore an interesting direction of directly applying graph networks and
rethink MTS forecasting from a pure graph perspective. We first define a novel
data structure, hypervariate graph, which regards each series value (regardless
of variates or timestamps) as a graph node, and represents sliding windows as
space-time fully-connected graphs. This perspective considers spatiotemporal
dynamics unitedly and reformulates classic MTS forecasting into the predictions
on hypervariate graphs. Then, we propose a novel architecture Fourier Graph
Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator
(FGO) to perform matrix multiplications in Fourier space. FourierGNN
accommodates adequate expressiveness and achieves much lower complexity, which
can effectively and efficiently accomplish the forecasting. Besides, our
theoretical analysis reveals FGO's equivalence to graph convolutions in the
time domain, which further verifies the validity of FourierGNN. Extensive
experiments on seven datasets have demonstrated our superior performance with
higher efficiency and fewer parameters compared with state-of-the-art methods.
Related papers
- Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
We propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module.
First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures.
Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model.
arXiv Detail & Related papers (2023-06-29T16:48:00Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Edge-Varying Fourier Graph Networks for Multivariate Time Series
Forecasting [46.76885997673142]
We build an efficient graph convolutional network for time-series variables.
A high-efficiency scale-free parameter learning scheme is derived for MTS analysis and forecasting.
Experiments show that EV-FGN outperforms state-of-the-art methods on seven real-world MTS datasets.
arXiv Detail & Related papers (2022-10-06T17:50:07Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
Long-term tensor-temporal forecasting (LSTF) makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data.
We propose new graph models to represent the contextual information of each node and the long-term parking revealed-temporal data dependency structure.
Our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.
arXiv Detail & Related papers (2022-04-23T06:51:37Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNN captures inter-series correlations and temporal dependencies.
It can be predicted effectively by convolution and sequential learning modules.
We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN.
arXiv Detail & Related papers (2021-03-13T13:44:20Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
Graph neural networks may be impractical in some real-world scenarios due to a lack of sufficient high-quality training data.
We put forth a novel mathematically designed framework to analyze-temporal data.
arXiv Detail & Related papers (2020-12-06T19:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.