論文の概要: Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images
- arxiv url: http://arxiv.org/abs/2310.19411v1
- Date: Mon, 30 Oct 2023 10:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 20:44:12.267775
- Title: Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images
- Title(参考訳): マンモグラム画像を用いたヒューリスティックアシストトランスレス-u-netとマルチスケール密度ネットによるインテリジェント乳癌診断
- Authors: Muhammad Yaqub, Feng Jinchao
- Abstract要約: 乳癌(BC)は、女性のがん関連死亡率に大きく寄与する。
悪性の腫瘤を正確に識別することは 依然として困難です
マンモグラフィ画像を用いたBCGスクリーニングのための新しい深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer (BC) significantly contributes to cancer-related mortality in
women, underscoring the criticality of early detection for optimal patient
outcomes. A mammography is a key tool for identifying and diagnosing breast
abnormalities; however, accurately distinguishing malignant mass lesions
remains challenging. To address this issue, we propose a novel deep learning
approach for BC screening utilizing mammography images. Our proposed model
comprises three distinct stages: data collection from established benchmark
sources, image segmentation employing an Atrous Convolution-based Attentive and
Adaptive Trans-Res-UNet (ACA-ATRUNet) architecture, and BC identification via
an Atrous Convolution-based Attentive and Adaptive Multi-scale DenseNet
(ACA-AMDN) model. The hyperparameters within the ACA-ATRUNet and ACA-AMDN
models are optimised using the Modified Mussel Length-based Eurasian
Oystercatcher Optimization (MML-EOO) algorithm. Performance evaluation,
leveraging multiple metrics, is conducted, and a comparative analysis against
conventional methods is presented. Our experimental findings reveal that the
proposed BC detection framework attains superior precision rates in early
disease detection, demonstrating its potential to enhance mammography-based
screening methodologies.
- Abstract(参考訳): 乳癌 (BC) は女性のがん関連死亡率に大きく寄与し, 早期発見の重要性が示唆された。
マンモグラフィは乳腺の異常を同定し診断するための重要なツールであるが,悪性腫瘍の正確な鑑別は困難である。
本稿では,マンモグラフィ画像を用いたbcスクリーニングのための新しい深層学習手法を提案する。
提案モデルは,確立されたベンチマーク音源からのデータ収集,atrous convolution-based attentive and adaptive trans-res-unet (aca-atrunet) アーキテクチャを用いた画像分割,atrous convolution-based attentive and adaptive multi-scale densenet (aca-amdn) モデルによるbc同定の3つの異なる段階からなる。
ACA-ATRUNetとACA-AMDNモデル内のハイパーパラメータは、MML-EOOアルゴリズムを用いて最適化される。
複数のメトリクスを活用する性能評価を行い,従来の手法との比較分析を行った。
以上の結果から,bc検出フレームワークは早期発見の精度が向上し,マンモグラフィによるスクリーニング手法が向上する可能性が示唆された。
関連論文リスト
- CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
肺がんサブタイプを多次元・多モード画像で正確に分類するための新しい深層学習ネットワークを提案する。
提案モデルの強みは, 対のCT-病理画像セットと独立のCT画像セットの両方を動的に処理できることにある。
また,ネットワーク学習を通じてモダリティ関係を定量的にマッピングするコントラスト制約モジュールも開発した。
論文 参考訳(メタデータ) (2024-07-18T01:42:00Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain
Multi-Center Breast Cancer Screening [4.587250201300601]
マンモグラフィーは高い変動性とマンモグラフィーのパターンのために課題を提起する。
MammoDGはクロスドメインマルチセンターマンモグラフィーデータの汎用的で信頼性の高い解析のための新しいディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2023-08-02T10:10:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
AUCスコアに対する新たなマージンベースサロゲート損失関数を提案する。
一般的に使用されるものよりも頑丈である。
大規模な最適化の観点からも同じ利点を享受しながら、正方損失。
私たちの知る限りでは、DAMが大規模医療画像データセットで成功するのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-06T03:41:51Z) - On segmentation of pectoralis muscle in digital mammograms by means of
deep learning [1.7114784273243784]
本稿では,データ駆動予測とグラフベース画像処理を組み合わせた2段階のセグメンテーション戦略を提案する。
提案手法では,乳房-胸部境界の位置を予測するために,畳み込みニューラルネットワーク(CNN)を用いる。
比較分析の結果,最先端技術よりも大幅に改善され,モデルフリーで完全自動処理が可能となった。
論文 参考訳(メタデータ) (2020-08-29T03:38:11Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。