Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills
- URL: http://arxiv.org/abs/2310.19424v1
- Date: Mon, 30 Oct 2023 10:34:25 GMT
- Title: Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills
- Authors: Seongun Kim, Kyowoon Lee, Jaesik Choi
- Abstract summary: We propose a novel approach to unsupervised skill discovery based on information theory, called Value Uncertainty Vari Curriculum Curriculum (VUVC)
We prove that, under regularity conditions, VUVC accelerates the increase of entropy in the visited states compared to the uniform curriculum.
We also demonstrate that the skills discovered by our method successfully complete a real-world robot navigation task in a zero-shot setup.
- Score: 25.326624139426514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mutual information-based reinforcement learning (RL) has been proposed as a
promising framework for retrieving complex skills autonomously without a
task-oriented reward function through mutual information (MI) maximization or
variational empowerment. However, learning complex skills is still challenging,
due to the fact that the order of training skills can largely affect sample
efficiency. Inspired by this, we recast variational empowerment as curriculum
learning in goal-conditioned RL with an intrinsic reward function, which we
name Variational Curriculum RL (VCRL). From this perspective, we propose a
novel approach to unsupervised skill discovery based on information theory,
called Value Uncertainty Variational Curriculum (VUVC). We prove that, under
regularity conditions, VUVC accelerates the increase of entropy in the visited
states compared to the uniform curriculum. We validate the effectiveness of our
approach on complex navigation and robotic manipulation tasks in terms of
sample efficiency and state coverage speed. We also demonstrate that the skills
discovered by our method successfully complete a real-world robot navigation
task in a zero-shot setup and that incorporating these skills with a global
planner further increases the performance.
Related papers
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
We present Latent-Predictive Empowerment (LPE), an algorithm that can compute empowerment in a more practical manner.
LPE learns large skillsets by maximizing an objective that is a principled replacement for the mutual information between skills and states.
arXiv Detail & Related papers (2024-10-15T00:41:18Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Constrained Ensemble Exploration for Unsupervised Skill Discovery [43.00837365639085]
Unsupervised Reinforcement Learning (RL) provides a promising paradigm for learning useful behaviors via reward-free per-training.
We propose a novel unsupervised RL framework via an ensemble of skills, where each skill performs partition exploration based on the state prototypes.
We find our method learns well-explored ensemble skills and achieves superior performance in various downstream tasks compared to previous methods.
arXiv Detail & Related papers (2024-05-25T03:07:56Z) - Functional Knowledge Transfer with Self-supervised Representation
Learning [11.566644244783305]
This work investigates the unexplored usability of self-supervised representation learning in the direction of functional knowledge transfer.
In this work, functional knowledge transfer is achieved by joint optimization of self-supervised learning pseudo task and supervised learning task.
arXiv Detail & Related papers (2023-03-12T21:14:59Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks.
We show that Quality Diversity (QD) methods are a competitive alternative to information-theory-augmented RL for skill discovery.
arXiv Detail & Related papers (2022-10-06T11:06:39Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
We propose a skill learning framework DR-GRL that aims to improve the sample efficiency and policy generalization.
In a weakly supervised manner, we propose a Spatial Transform AutoEncoder (STAE) to learn an interpretable and controllable representation.
We empirically demonstrate that DR-GRL significantly outperforms the previous methods in sample efficiency and policy generalization.
arXiv Detail & Related papers (2022-02-28T09:05:14Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.