Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives
- URL: http://arxiv.org/abs/2408.06904v2
- Date: Thu, 3 Oct 2024 01:27:29 GMT
- Title: Re-TASK: Revisiting LLM Tasks from Capability, Skill, and Knowledge Perspectives
- Authors: Zhihu Wang, Shiwan Zhao, Yu Wang, Heyuan Huang, Sitao Xie, Yubo Zhang, Jiaxin Shi, Zhixing Wang, Hongyan Li, Junchi Yan,
- Abstract summary: Chain-of-Thought (CoT) has become a pivotal method for solving complex problems.
Large language models (LLMs) often struggle to accurately decompose domain-specific tasks.
This paper introduces the Re-TASK framework, a novel theoretical model that revisits LLM tasks from the perspectives of capability, skill, and knowledge.
- Score: 54.14429346914995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Chain-of-Thought (CoT) paradigm has become a pivotal method for solving complex problems. However, its application to intricate, domain-specific tasks remains challenging, as large language models (LLMs) often struggle to accurately decompose these tasks and, even when decomposition is correct, fail to execute the subtasks effectively. This paper introduces the Re-TASK framework, a novel theoretical model that revisits LLM tasks from the perspectives of capability, skill, and knowledge, drawing on the principles of Bloom's Taxonomy and Knowledge Space Theory. While CoT offers a workflow perspective on tasks, the Re-TASK framework introduces a Chain-of-Learning view, illustrating how tasks and their corresponding subtasks depend on various capability items. Each capability item is further dissected into its constituent aspects of knowledge and skills. Our framework reveals that many CoT failures in domain-specific tasks stem from insufficient knowledge or inadequate skill adaptation. In response, we combine CoT with the Re-TASK framework and implement a carefully designed Re-TASK prompting strategy to improve task performance. Specifically, we identify core capability items linked to tasks and subtasks, then strengthen these capabilities through targeted knowledge injection and skill adaptation. We validate the Re-TASK framework on three datasets across the law, finance, and mathematics domains, achieving significant improvements over the baseline models. Notably, our approach yields a remarkable 44.42% improvement with the Yi-1.5-9B model and a 33.08% improvement with the Llama3-Chinese-8b on the legal dataset. These experimental results confirm the effectiveness of the Re-TASK framework, demonstrating substantial enhancements in both the performance and applicability of LLMs.
Related papers
- Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings [8.000144830397911]
Continual learning (CL) has been an essential topic in the contemporary application of deep neural networks.
We propose a transferability-aware task embedding named H-embedding and train a hypernet under its guidance to learn task-conditioned model weights for CL tasks.
arXiv Detail & Related papers (2025-02-17T09:52:19Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Knowledge Editing through Chain-of-Thought [12.270274049887298]
Large Language Models (LLMs) have demonstrated exceptional capabilities across a wide range of natural language processing (NLP) tasks.
Keeping these models up-to-date with evolving world knowledge remains a significant challenge due to the high costs of frequent retraining.
We propose EditCoT, a novel knowledge editing framework that flexibly and efficiently updates LLMs across various tasks without retraining.
arXiv Detail & Related papers (2024-12-23T17:17:50Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Learn it or Leave it: Module Composition and Pruning for Continual Learning [48.07144492109635]
MoCL-P is a lightweight continual learning method that balances knowledge integration and computational overhead.
Our evaluation shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times.
arXiv Detail & Related papers (2024-06-26T19:18:28Z) - Variational Curriculum Reinforcement Learning for Unsupervised Discovery
of Skills [25.326624139426514]
We propose a novel approach to unsupervised skill discovery based on information theory, called Value Uncertainty Vari Curriculum Curriculum (VUVC)
We prove that, under regularity conditions, VUVC accelerates the increase of entropy in the visited states compared to the uniform curriculum.
We also demonstrate that the skills discovered by our method successfully complete a real-world robot navigation task in a zero-shot setup.
arXiv Detail & Related papers (2023-10-30T10:34:25Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Task-Agnostic Continual Reinforcement Learning: Gaining Insights and
Overcoming Challenges [27.474011433615317]
Continual learning (CL) enables the development of models and agents that learn from a sequence of tasks.
We investigate the factors that contribute to the performance differences between task-agnostic CL and multi-task (MTL) agents.
arXiv Detail & Related papers (2022-05-28T17:59:00Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.