Generative Neural Fields by Mixtures of Neural Implicit Functions
- URL: http://arxiv.org/abs/2310.19464v1
- Date: Mon, 30 Oct 2023 11:41:41 GMT
- Title: Generative Neural Fields by Mixtures of Neural Implicit Functions
- Authors: Tackgeun You and Mijeong Kim and Jungtaek Kim and Bohyung Han
- Abstract summary: We propose a novel approach to learning the generative neural fields represented by linear combinations of implicit basis networks.
Our algorithm learns basis networks in the form of implicit neural representations and their coefficients in a latent space by either conducting meta-learning or adopting auto-decoding paradigms.
- Score: 43.27461391283186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach to learning the generative neural fields
represented by linear combinations of implicit basis networks. Our algorithm
learns basis networks in the form of implicit neural representations and their
coefficients in a latent space by either conducting meta-learning or adopting
auto-decoding paradigms. The proposed method easily enlarges the capacity of
generative neural fields by increasing the number of basis networks while
maintaining the size of a network for inference to be small through their
weighted model averaging. Consequently, sampling instances using the model is
efficient in terms of latency and memory footprint. Moreover, we customize
denoising diffusion probabilistic model for a target task to sample latent
mixture coefficients, which allows our final model to generate unseen data
effectively. Experiments show that our approach achieves competitive generation
performance on diverse benchmarks for images, voxel data, and NeRF scenes
without sophisticated designs for specific modalities and domains.
Related papers
- A method for quantifying the generalization capabilities of generative models for solving Ising models [5.699467840225041]
We use a Hamming distance regularizer to quantify the generalization capabilities of various network architectures combined with VAN.
We conduct numerical experiments on several network architectures combined with VAN, including feed-forward neural networks, recurrent neural networks, and graph neural networks.
Our method is of great significance for assisting in the Neural Architecture Search field of searching for the optimal network architectures when solving large-scale Ising models.
arXiv Detail & Related papers (2024-05-06T12:58:48Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
We investigate the approximation efficiency of score functions by deep neural networks in generative modeling.
We observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms.
We provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
arXiv Detail & Related papers (2023-09-20T15:51:10Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
A core challenge in the interpretation of deep neural networks is identifying commonalities between the underlying algorithms implemented by distinct networks trained for the same task.
Motivated by this problem, we introduce DYNAMO, an algorithm that constructs low-dimensional manifold where each point corresponds to a neural network model, and two points are nearby if the corresponding neural networks enact similar high-level computational processes.
DYNAMO takes as input a collection of pre-trained neural networks and outputs a meta-model that emulates the dynamics of the hidden states as well as the outputs of any model in the collection.
arXiv Detail & Related papers (2023-02-27T19:00:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Fully differentiable model discovery [0.0]
We propose an approach by combining neural network based surrogates with Sparse Bayesian Learning.
Our work expands PINNs to various types of neural network architectures, and connects neural network-based surrogates to the rich field of Bayesian parameter inference.
arXiv Detail & Related papers (2021-06-09T08:11:23Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.