論文の概要: VideoCrafter1: Open Diffusion Models for High-Quality Video Generation
- arxiv url: http://arxiv.org/abs/2310.19512v1
- Date: Mon, 30 Oct 2023 13:12:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 20:21:07.454788
- Title: VideoCrafter1: Open Diffusion Models for High-Quality Video Generation
- Title(参考訳): VideoCrafter1: 高品質ビデオ生成のためのオープン拡散モデル
- Authors: Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun,
Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng,
Ying Shan
- Abstract要約: 高品質ビデオ生成のための2つの拡散モデル、すなわち、テキスト・ツー・ビデオ(T2V)と画像・ツー・ビデオ(I2V)モデルを導入する。
T2Vモデルは与えられたテキスト入力に基づいてビデオを合成し、I2Vモデルは追加のイメージ入力を含む。
提案したT2Vモデルは,解像度が1024×576$のリアルで映像品質の高いビデオを生成することができる。
- 参考スコア(独自算出の注目度): 97.5767036934979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video generation has increasingly gained interest in both academia and
industry. Although commercial tools can generate plausible videos, there is a
limited number of open-source models available for researchers and engineers.
In this work, we introduce two diffusion models for high-quality video
generation, namely text-to-video (T2V) and image-to-video (I2V) models. T2V
models synthesize a video based on a given text input, while I2V models
incorporate an additional image input. Our proposed T2V model can generate
realistic and cinematic-quality videos with a resolution of $1024 \times 576$,
outperforming other open-source T2V models in terms of quality. The I2V model
is designed to produce videos that strictly adhere to the content of the
provided reference image, preserving its content, structure, and style. This
model is the first open-source I2V foundation model capable of transforming a
given image into a video clip while maintaining content preservation
constraints. We believe that these open-source video generation models will
contribute significantly to the technological advancements within the
community.
- Abstract(参考訳): ビデオ生成は、学界と産業の両方にますます関心を寄せている。
商用ツールは可塑性ビデオを生成することができるが、研究者やエンジニアが利用できるオープンソースモデルは限られている。
本稿では,高品質映像生成のための拡散モデルとして,t2v(text-to-video)とi2v(image-to-video)モデルを紹介する。
T2Vモデルは与えられたテキスト入力に基づいてビデオを合成し、I2Vモデルは追加のイメージ入力を含む。
提案したT2Vモデルは、解像度が1024 \times 576$のリアルで映像品質の高いビデオを生成することができる。
I2Vモデルは、提供された参照画像の内容に厳密に準拠し、その内容、構造、スタイルを保存するビデオを作成するように設計されている。
このモデルは、コンテンツ保存制約を維持しながら、所定の画像をビデオクリップに変換することができる最初のオープンソースI2V基盤モデルである。
これらのオープンソースビデオ生成モデルは、コミュニティ内の技術進歩に大きく貢献すると考えています。
関連論文リスト
- xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1(xGen-SynVideo-1)は、テキスト記述からリアルなシーンを生成することができるテキスト・ツー・ビデオ(T2V)生成モデルである。
VidVAEはビデオデータを空間的にも時間的にも圧縮し、視覚トークンの長さを大幅に削減する。
DiTモデルは、空間的および時間的自己アテンション層を取り入れ、異なる時間枠とアスペクト比をまたいだ堅牢な一般化を可能にする。
論文 参考訳(メタデータ) (2024-08-22T17:55:22Z) - TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models [40.38379402600541]
TI2V-Zeroは、予め訓練されたテキスト・ツー・ビデオ(T2V)拡散モデルを、提供される画像に条件付けることができるゼロショット・チューニングフリーの手法である。
付加的な画像入力で映像生成を誘導するために,逆復調過程を変調する「繰り返しスライド」戦略を提案する。
TI2V-Zeroは、最新のオープンドメインTI2Vモデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-25T03:21:11Z) - Subjective-Aligned Dataset and Metric for Text-to-Video Quality Assessment [54.00254267259069]
現在までに最大規模のテキスト・ビデオ品質評価データベース(T2VQA-DB)を構築している。
データセットは、9つの異なるT2Vモデルによって生成される1万のビデオで構成されている。
主観的テキスト・ビデオ品質評価(T2VQA)のためのトランスフォーマーに基づく新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T16:52:49Z) - Photorealistic Video Generation with Diffusion Models [44.95407324724976]
W.A.L.T.は拡散モデリングによるビデオ生成のためのトランスフォーマーベースのアプローチである。
我々は因果エンコーダを用いて、統一された潜在空間内で画像とビデオを共同で圧縮し、モダリティ間のトレーニングと生成を可能にする。
また,基本潜時ビデオ拡散モデルと2つのビデオ超解像拡散モデルからなるテキスト・ビデオ生成タスクのための3つのモデルのカスケードをトレーニングし,毎秒8ドルフレームで512倍の解像度の動画を生成する。
論文 参考訳(メタデータ) (2023-12-11T18:59:57Z) - LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion
Models [133.088893990272]
我々は、訓練済みのテキスト・ツー・イメージ(T2I)モデルをベースとして、高品質なテキスト・ツー・ビデオ生成モデル(T2V)を学習する。
本稿では,遅延拡散モデルを用いた統合ビデオ生成フレームワークLaVieを提案する。
論文 参考訳(メタデータ) (2023-09-26T17:52:03Z) - Tune-A-Video: One-Shot Tuning of Image Diffusion Models for
Text-to-Video Generation [31.882356164068753]
テキスト・トゥ・イメージ(T2I)生成の成功を再現するため、最近のテキスト・トゥ・ビデオ(T2V)生成では、T2V生成のためのデータセットに大量のデータセットが使用されている。
そこで本研究では,Tune-A-Videoが様々なアプリケーション上で時間的コヒーレントなビデオを生成することを提案する。
論文 参考訳(メタデータ) (2022-12-22T09:43:36Z) - Imagen Video: High Definition Video Generation with Diffusion Models [64.06483414521222]
Imagen Videoは、ビデオ拡散モデルのカスケードに基づくテキスト条件付きビデオ生成システムである。
我々は高精細度ビデオを生成することができるが、高い可制御性と世界的知識を持つ画像n Videoを見いだす。
論文 参考訳(メタデータ) (2022-10-05T14:41:38Z) - Make-A-Video: Text-to-Video Generation without Text-Video Data [69.20996352229422]
Make-A-Videoは、テキスト・トゥ・イメージ(T2I)生成における最新の進歩をテキスト・トゥ・ビデオ(T2V)に変換するアプローチである。
我々は,新しい空間時空間モジュールを用いたT2Iモデル上に構築する,シンプルで効果的な手法を設計する。
空間的および時間的解像度、テキストへの忠実さ、品質など、あらゆる面で、Make-A-Videoは、テキスト・ビデオ生成における新しい最先端を定めている。
論文 参考訳(メタデータ) (2022-09-29T13:59:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。