A Survey of the Security Challenges and Requirements for IoT Operating Systems
- URL: http://arxiv.org/abs/2310.19825v1
- Date: Fri, 27 Oct 2023 19:19:07 GMT
- Title: A Survey of the Security Challenges and Requirements for IoT Operating Systems
- Authors: Alvi Jawad,
- Abstract summary: The Internet of Things (IoT) is becoming an integral part of our modern lives as we converge towards a world surrounded by ubiquitous connectivity.
The inherent complexity presented by the vast IoT ecosystem ends up in an insufficient understanding of individual system components and their interactions.
There is a need for a unifying operating system (OS) that can act as a cornerstone regulating the development of stable and secure solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) is becoming an integral part of our modern lives as we converge towards a world surrounded by ubiquitous connectivity. The inherent complexity presented by the vast IoT ecosystem ends up in an insufficient understanding of individual system components and their interactions, leading to numerous security challenges. In order to create a secure IoT platform from the ground up, there is a need for a unifying operating system (OS) that can act as a cornerstone regulating the development of stable and secure solutions. In this paper, we present a classification of the security challenges stemming from the manifold aspects of IoT development. We also specify security requirements to direct the secure development of an unifying IoT OS to resolve many of those ensuing challenges. Survey of several modern IoT OSs confirm that while the developers of the OSs have taken many alternative approaches to implement security, we are far from engineering an adequately secure and unified architecture. More broadly, the study presented in this paper can help address the growing need for a secure and unified platform to base IoT development on and assure the safe, secure, and reliable operation of IoT in critical domains.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Towards Threat Modelling of IoT Context-Sharing Platforms [4.098759138493994]
We propose a framework for threat modelling and security analysis of a generic IoT context-sharing solution.
We identify significant security challenges in the design of IoT context-sharing platforms.
Our threat modelling provides an in-depth analysis of the techniques and sub-techniques adversaries may use to exploit these systems.
arXiv Detail & Related papers (2024-08-22T02:41:06Z) - IoT in the Cloud: Exploring Security Challenges and Mitigations for a Connected World [18.36339203254509]
The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape.
IoT devices, inherently connected to the internet, are susceptible to various forms of attacks.
IoT services often handle sensitive user data, which could be exploited by malicious actors or unauthorized service providers.
arXiv Detail & Related papers (2024-02-01T05:55:43Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
We present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes.
SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices.
We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud.
arXiv Detail & Related papers (2023-09-26T08:11:38Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
The integration of the Internet of Things (IoT) connects a number of intelligent devices with a minimum of human interference.
Current security approaches can also be improved to protect the IoT environment effectively.
Deep learning (DL)/ machine learning (ML) methods are essential to turn IoT systems protection from simply enabling safe contact between IoT systems to intelligence systems in security.
arXiv Detail & Related papers (2022-10-24T19:02:27Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoT platforms have been developed into a global giant that grabs every aspect of our daily lives by advancing human life with its unaccountable smart services.
There are existing security measures that can be applied to protect IoT.
Traditional techniques are not as efficient with the advancement booms as well as different attack types and their severeness.
A huge technological advancement has been noticed in Machine Learning (ML) which has opened many possible research windows to address ongoing and future challenges in IoT.
arXiv Detail & Related papers (2020-04-11T03:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.