Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges
- URL: http://arxiv.org/abs/2309.07438v1
- Date: Thu, 14 Sep 2023 05:43:36 GMT
- Title: Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges
- Authors: Fei Dou, Jin Ye, Geng Yuan, Qin Lu, Wei Niu, Haijian Sun, Le Guan,
Guoyu Lu, Gengchen Mai, Ninghao Liu, Jin Lu, Zhengliang Liu, Zihao Wu,
Chenjiao Tan, Shaochen Xu, Xianqiao Wang, Guoming Li, Lilong Chai, Sheng Li,
Jin Sun, Hongyue Sun, Yunli Shao, Changying Li, Tianming Liu, Wenzhan Song
- Abstract summary: Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
- Score: 55.82853124625841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial General Intelligence (AGI), possessing the capacity to comprehend,
learn, and execute tasks with human cognitive abilities, engenders significant
anticipation and intrigue across scientific, commercial, and societal arenas.
This fascination extends particularly to the Internet of Things (IoT), a
landscape characterized by the interconnection of countless devices, sensors,
and systems, collectively gathering and sharing data to enable intelligent
decision-making and automation. This research embarks on an exploration of the
opportunities and challenges towards achieving AGI in the context of the IoT.
Specifically, it starts by outlining the fundamental principles of IoT and the
critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it
delves into AGI fundamentals, culminating in the formulation of a conceptual
framework for AGI's seamless integration within IoT. The application spectrum
for AGI-infused IoT is broad, encompassing domains ranging from smart grids,
residential environments, manufacturing, and transportation to environmental
monitoring, agriculture, healthcare, and education. However, adapting AGI to
resource-constrained IoT settings necessitates dedicated research efforts.
Furthermore, the paper addresses constraints imposed by limited computing
resources, intricacies associated with large-scale IoT communication, as well
as the critical concerns pertaining to security and privacy.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Introduction to IoT [0.0]
The Internet of Things has rapidly transformed the 21st century.
The integration of smart devices and automation technologies has revolutionized every aspect of our lives.
It is also essential to recognize the significant safety, security, and trust concerns in this technological landscape.
arXiv Detail & Related papers (2023-12-09T10:29:16Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Fostering new Vertical and Horizontal IoT Applications with Intelligence
Everywhere [8.208838459484676]
Intelligence Everywhere is predicated on the seamless integration of IoT networks transporting a vast amount of data streams.
This paper discusses the state-of-the-art research and the principles of the Intelligence Everywhere framework.
It also introduces a novel perspective for the development of horizontal IoT applications.
arXiv Detail & Related papers (2023-09-30T11:59:39Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Machine Learning Systems in the IoT: Trustworthiness Trade-offs for Edge
Intelligence [1.2437226707039446]
Machine learning systems (MLSys) are emerging in the Internet of Things (IoT) to provision edge intelligence.
This paper analyzes the trade-offs by covering the latest developments (up to 2020) on scaling and distributing ML across cloud, edge, and IoT devices.
arXiv Detail & Related papers (2020-12-01T11:42:34Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.