GOPlan: Goal-conditioned Offline Reinforcement Learning by Planning with Learned Models
- URL: http://arxiv.org/abs/2310.20025v3
- Date: Thu, 16 May 2024 14:08:55 GMT
- Title: GOPlan: Goal-conditioned Offline Reinforcement Learning by Planning with Learned Models
- Authors: Mianchu Wang, Rui Yang, Xi Chen, Hao Sun, Meng Fang, Giovanni Montana,
- Abstract summary: Goal-conditioned Offline Planning (GOPlan) is a novel model-based framework that contains two key phases.
GOPlan pretrains a prior policy capable of capturing multi-modal action distribution within the multi-goal dataset.
The reanalysis method generates high-quality imaginary data by planning with learned models for both intra-trajectory and inter-trajectory goals.
- Score: 31.628341050846768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline Goal-Conditioned RL (GCRL) offers a feasible paradigm for learning general-purpose policies from diverse and multi-task offline datasets. Despite notable recent progress, the predominant offline GCRL methods, mainly model-free, face constraints in handling limited data and generalizing to unseen goals. In this work, we propose Goal-conditioned Offline Planning (GOPlan), a novel model-based framework that contains two key phases: (1) pretraining a prior policy capable of capturing multi-modal action distribution within the multi-goal dataset; (2) employing the reanalysis method with planning to generate imagined trajectories for funetuning policies. Specifically, we base the prior policy on an advantage-weighted conditioned generative adversarial network, which facilitates distinct mode separation, mitigating the pitfalls of out-of-distribution (OOD) actions. For further policy optimization, the reanalysis method generates high-quality imaginary data by planning with learned models for both intra-trajectory and inter-trajectory goals. With thorough experimental evaluations, we demonstrate that GOPlan achieves state-of-the-art performance on various offline multi-goal navigation and manipulation tasks. Moreover, our results highlight the superior ability of GOPlan to handle small data budgets and generalize to OOD goals.
Related papers
- Stitching Sub-Trajectories with Conditional Diffusion Model for
Goal-Conditioned Offline RL [18.31263353823447]
We propose a model-based offline Goal-Conditioned Reinforcement Learning (Offline GCRL) method to acquire diverse goal-oriented skills.
In this paper, we use the diffusion model that generates future plans conditioned on the target goal and value, with the target value estimated from the goal-relabeled offline dataset.
We report state-of-the-art performance in the standard benchmark set of GCRL tasks, and demonstrate the capability to successfully stitch the segments of suboptimal trajectories in the offline data to generate high-quality plans.
arXiv Detail & Related papers (2024-02-11T15:23:13Z) - HIQL: Offline Goal-Conditioned RL with Latent States as Actions [81.67963770528753]
We propose a hierarchical algorithm for goal-conditioned RL from offline data.
We show how this hierarchical decomposition makes our method robust to noise in the estimated value function.
Our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data.
arXiv Detail & Related papers (2023-07-22T00:17:36Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Imitating Graph-Based Planning with Goal-Conditioned Policies [72.61631088613048]
We present a self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy.
We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods.
arXiv Detail & Related papers (2023-03-20T14:51:10Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Model-Based Offline Planning with Trajectory Pruning [15.841609263723575]
offline reinforcement learning (RL) enables learning policies using pre-collected datasets without environment interaction.
We propose a new light-weighted model-based offline planning framework, namely MOPP, which tackles the dilemma between the restrictions of offline learning and high-performance planning.
Experimental results show that MOPP provides competitive performance compared with existing model-based offline planning and RL approaches.
arXiv Detail & Related papers (2021-05-16T05:00:54Z) - PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals [14.315501760755609]
PlanGAN is a model-based algorithm for solving multi-goal tasks in environments with sparse rewards.
Our studies indicate that PlanGAN can achieve comparable performance whilst being around 4-8 times more sample efficient.
arXiv Detail & Related papers (2020-06-01T12:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.