論文の概要: AdaSub: Stochastic Optimization Using Second-Order Information in
Low-Dimensional Subspaces
- arxiv url: http://arxiv.org/abs/2310.20060v2
- Date: Mon, 6 Nov 2023 21:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 18:39:41.107097
- Title: AdaSub: Stochastic Optimization Using Second-Order Information in
Low-Dimensional Subspaces
- Title(参考訳): AdaSub: 低次元部分空間における2次情報を用いた確率最適化
- Authors: Jo\~ao Victor Galv\~ao da Mata and Martin S. Andersen
- Abstract要約: 本稿では,低次元部分空間における2階情報に基づく探索方向の探索アルゴリズムであるAdaSubを紹介する。
一階法と比較して、二階法は収束特性が優れているが、繰り返しごとにヘッセン行列を計算する必要があるため、計算コストが過大になる。
予備的な数値結果から、AdaSubは所定の精度に達するのに必要なイテレーションの時間と回数で、一般的なイテレーションを超越していることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce AdaSub, a stochastic optimization algorithm that computes a
search direction based on second-order information in a low-dimensional
subspace that is defined adaptively based on available current and past
information. Compared to first-order methods, second-order methods exhibit
better convergence characteristics, but the need to compute the Hessian matrix
at each iteration results in excessive computational expenses, making them
impractical. To address this issue, our approach enables the management of
computational expenses and algorithm efficiency by enabling the selection of
the subspace dimension for the search. Our code is freely available on GitHub,
and our preliminary numerical results demonstrate that AdaSub surpasses popular
stochastic optimizers in terms of time and number of iterations required to
reach a given accuracy.
- Abstract(参考訳): 本研究では,現在および過去の情報に基づいて適応的に定義される低次元部分空間において,二次情報に基づく探索方向を計算する確率的最適化アルゴリズムadasubを提案する。
一階法と比較して二階法の方が収束特性は良いが、各イテレーションでヘッセン行列を計算する必要性は計算コストを過大にし、実用的でない。
この問題に対処するため,提案手法は,探索のための部分空間次元の選択を可能にすることにより,計算コストとアルゴリズム効率の管理を可能にする。
我々のコードはgithubで無料で入手でき、予備的な数値結果は、adasubが所定の精度に達するのに必要な時間とイテレーション数で人気のある確率最適化器を上回っていることを示している。
関連論文リスト
- Adaptive and Optimal Second-order Optimistic Methods for Minimax Optimization [32.939120407900035]
私たちのアルゴリズムは、イテレーション毎に1つの線形システムだけを解決する必要のある、単純な更新ルールを備えています。
また,提案アルゴリズムの実用性能を,既存の2次アルゴリズムと比較して評価した。
論文 参考訳(メタデータ) (2024-06-04T06:56:41Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Learning the Positions in CountSketch [49.57951567374372]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習ベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-11T07:28:35Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - A Novel Fast Exact Subproblem Solver for Stochastic Quasi-Newton Cubic
Regularized Optimization [0.38233569758620045]
本稿では,大規模非制約最適化のための3乗法 (ARC) を用いた適応正規化について述べる。
我々の新しいアプローチであるARCLQNは、最小限のチューニングを伴うモダンと比較される。
論文 参考訳(メタデータ) (2022-04-19T20:25:29Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
機械学習における連続最適化問題に対処する一階法と二階法を考察する。
一階述語の場合、半決定論的から二次正規化への遷移の枠組みを提案する。
本稿では,適応的なサンプリングと適応的なステップサイズを持つ新しい1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-29T18:10:00Z) - Efficient Matrix-Free Approximations of Second-Order Information, with
Applications to Pruning and Optimization [16.96639526117016]
Inverse-Hessian Vector Products (IHVPs) の行列のない線形時間アプローチについて検討する。
これらのアルゴリズムは、既存の2階法と比較して計算オーバーヘッドが低いネットワークプルーニングと最適化の最先端結果をもたらす。
論文 参考訳(メタデータ) (2021-07-07T17:01:34Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。