Low-dimensional polaritonics: Emergent non-trivial topology on
exciton-polariton simulators
- URL: http://arxiv.org/abs/2310.20166v1
- Date: Tue, 31 Oct 2023 04:22:58 GMT
- Title: Low-dimensional polaritonics: Emergent non-trivial topology on
exciton-polariton simulators
- Authors: Konstantin Rips
- Abstract summary: Polaritonic lattice configurations in dimensions $D=2$ are used as simulators of topological phases, based on symmetry class A Hamiltonians.
We provide a comprehensive mathematical framework, which fully addresses the source and structure of topological phases in coupled polaritonic array systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polaritonic lattice configurations in dimensions $D=2$ are used as simulators
of topological phases, based on symmetry class A Hamiltonians. Numerical and
topological studies are performed in order to characterise the bulk topology of
insulating phases, which is predicted to be connected to non-trivial edge mode
states on the boundary. By using spectral flattened Hamiltonians on specific
lattice geometries with time reversal symmetry breaking, e.g. Kagome lattice,
we obtain maps from the Brillouin zone into Grassmannian spaces, which are
further investigated by the topological method of space fibrations. Numerical
evidence reveals a connection between the sum of valence band Chern numbers and
the index of the projection operator onto the valence band states. Along these
lines, we discover an index formula which resembles other index theorems and
the classical result of Atiyah-Singer, but without any Dirac operator and from
a different perspective. Through a combination of different tools, in
particular homotopy and homology-cohomology duality, we provide a comprehensive
mathematical framework, which fully addresses the source and structure of
topological phases in coupled polaritonic array systems. Based on these
results, it becomes possible to infer further designs and models of
two-dimensional single sheet Chern insulators, implemented as polariton
simulators.
Related papers
- One-dimensional $\mathbb{Z}$-classified topological crystalline insulator under space-time inversion symmetry [0.6144680854063939]
We classify one-dimensional (1D) topological crystalline insulators by $mathbbZ$ invariants under space-time inversion symmetry.
This finding stands in marked contrast to the conventional classification of 1D band topology protected by inversion symmetry.
We propose to experimentally discern band topology through relative polarization of edge states or bulk states.
arXiv Detail & Related papers (2024-11-01T02:52:50Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - One-dimensional symmetric phases protected by frieze symmetries [0.0]
We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the presence of the frieze space groups in one dimension using matrix product states.
We identify seventeen distinct non-trivial phases, define canonical forms, and compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
arXiv Detail & Related papers (2022-02-25T18:41:26Z) - Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory [2.206623168926072]
Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT)
Topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory.
arXiv Detail & Related papers (2022-01-28T14:13:38Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.