Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory
- URL: http://arxiv.org/abs/2201.12361v3
- Date: Fri, 24 May 2024 12:20:13 GMT
- Title: Electric-magnetic duality and $\mathbb{Z}_2$ symmetry enriched Abelian lattice gauge theory
- Authors: Zhian Jia, Dagomir Kaszlikowski, Sheng Tan,
- Abstract summary: Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT)
Topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory.
- Score: 2.206623168926072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kitaev's quantum double model is a lattice gauge theoretic realization of Dijkgraaf-Witten topological quantum field theory (TQFT), its topologically protected ground state space has broad applications for topological quantum computation and topological quantum memory. We investigate the $\mathbb{Z}_2$ symmetry enriched generalization of the model for the cyclic Abelian group in a categorical framework and present an explicit Hamiltonian construction. This model provides a lattice realization of the $\mathbb{Z}_2$ symmetry enriched topological (SET) phase. We discuss in detail the categorical symmetry of the phase, for which the electric-magnetic (EM) duality symmetry is a special case. The aspects of symmetry defects are investigated using the $G$-crossed unitary braided fusion category (UBFC). By determining the corresponding anyon condensation, the gapped boundaries and boundary-bulk duality are also investigated. Then we carefully construct the explicit lattice realization of EM duality for these SET phases.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Gauge theory and mixed state criticality [0.0]
In mixed quantum states, the notion of symmetry is divided into two types: strong and weak symmetry.
We present a way to construct various SSB phases for strong symmetries, starting from the ground state phase diagram of lattice gauge theory models.
arXiv Detail & Related papers (2024-11-07T01:40:56Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Gapless symmetry-protected topological phases and generalized deconfined critical points from gauging a finite subgroup [0.6675805308519986]
Gauging a finite subgroup of a global symmetry can map conventional phases and phase transitions to unconventional ones.
In this work, we study an emergent $mathbbZ$-gauged system with global $U(1)$.
We also discuss the stability of these phases and the critical points to small perturbations and their potential experimental realizations.
arXiv Detail & Related papers (2024-01-22T05:46:49Z) - Classification of Dipolar Symmetry-Protected Topological Phases: Matrix
Product States, Stabilizer Hamiltonians and Finite Tensor Gauge Theories [0.0]
We classify one-dimensional symmetry-protected topological phases protected by dipole symmetries.
For each phase in the classification, we explicitly construct a stabilizer Hamiltonian to realize the SPT phase.
These field theories generalize the Dijkgraaf-Witten theories to twisted finite tensor gauge theories.
arXiv Detail & Related papers (2023-11-08T19:00:00Z) - Classification of 1+1D gapless symmetry protected phases via topological
holography [1.6528578738461073]
We establish a one-to-one correspondence between 1+1D bosonic gSPTs, and partially-confined boundaries of 2+1D SymTFTs.
We show that this data precisely matches that of symmetry-preserving partial confinement (or partially gapped boundaries) of 2+1D quantum double models.
arXiv Detail & Related papers (2023-10-31T18:02:01Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Dynamical abelian anyons with bound states and scattering states [0.0]
We introduce a family of quantum spin Hamiltonians on $mathbbZ2$.
In particular, the anyons exhibit a non-trivial holonomy with a quantized phase, consistent with the gauge and duality symmetries of the Hamiltonian.
arXiv Detail & Related papers (2023-03-13T18:01:02Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.