論文の概要: FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated
Recommendation Systems
- arxiv url: http://arxiv.org/abs/2310.20193v1
- Date: Tue, 31 Oct 2023 05:36:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 16:21:19.791738
- Title: FedRec+: Enhancing Privacy and Addressing Heterogeneity in Federated
Recommendation Systems
- Title(参考訳): fedrec+:federated recommendation systemにおけるプライバシの強化と異質性への対応
- Authors: Lin Wang, Zhichao Wang, Xi Leng, Xiaoying Tang
- Abstract要約: FedRec+は、フェデレーションレコメンデーションシステムのためのアンサンブルフレームワークである。
プライバシーを強化し、エッジユーザの通信コストを低減します。
FedRec+の最先端性能を示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 15.463595798992621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preserving privacy and reducing communication costs for edge users pose
significant challenges in recommendation systems. Although federated learning
has proven effective in protecting privacy by avoiding data exchange between
clients and servers, it has been shown that the server can infer user ratings
based on updated non-zero gradients obtained from two consecutive rounds of
user-uploaded gradients. Moreover, federated recommendation systems (FRS) face
the challenge of heterogeneity, leading to decreased recommendation
performance. In this paper, we propose FedRec+, an ensemble framework for FRS
that enhances privacy while addressing the heterogeneity challenge. FedRec+
employs optimal subset selection based on feature similarity to generate
near-optimal virtual ratings for pseudo items, utilizing only the user's local
information. This approach reduces noise without incurring additional
communication costs. Furthermore, we utilize the Wasserstein distance to
estimate the heterogeneity and contribution of each client, and derive optimal
aggregation weights by solving a defined optimization problem. Experimental
results demonstrate the state-of-the-art performance of FedRec+ across various
reference datasets.
- Abstract(参考訳): エッジユーザのプライバシ保護と通信コスト削減は,レコメンデーションシステムにおいて大きな課題となる。
フェデレーション学習は,クライアントとサーバ間のデータ交換を回避して,プライバシ保護に有効であることが証明されているが,ユーザ負荷勾配の連続2ラウンドから得られた更新された非ゼロ勾配に基づいて,サーバがユーザの評価を推定できることが示されている。
さらに、フェデレーションレコメンデーションシステム(FRS)は不均一性の課題に直面し、レコメンデーション性能が低下する。
本稿では、不均一性問題に対処しながらプライバシーを高めるFedRec+という、FedRec+のアンサンブルフレームワークを提案する。
fedrec+は、ユーザのローカル情報のみを利用して、擬似アイテムの最適に近い仮想評価を生成するために、特徴の類似性に基づく最適なサブセット選択を用いる。
このアプローチは、追加の通信コストを伴わずにノイズを低減します。
さらに,各クライアントの異質性と寄与を推定するためにwasserstein距離を利用し,最適化問題の解法を用いて最適凝集重みを導出する。
実験結果は、さまざまな参照データセット間でFedRec+の最先端性能を示す。
関連論文リスト
- Co-clustering for Federated Recommender System [33.70723179405055]
Federated Recommender System(FRS)は、高品質なレコメンデーションの提供とユーザのプライバシの保護のバランスをとるソリューションを提供する。
パーソナライズされた意思決定パターンによって一般的に観察されるFRSにおける統計的不均一性の存在は、課題を引き起こす可能性がある。
本稿では,Co-clustering Federated RecommendationメカニズムであるCoFedRecを提案する。
論文 参考訳(メタデータ) (2024-11-03T21:32:07Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System [15.589541738576528]
フェデレートされたレコメンデーションシステム(FedRecs)は、デバイス上のレコメンデーションにおいてユーザのプライバシを保護するために人気のある研究方向として登場した。
FedRecsでは、ユーザーはデータをローカルに保持し、モデルパラメータを中央サーバにアップロードすることで、ローカルのコラボレーティブな情報のみをコントリビュートする。
本稿では,新しいフェデレーション・レコメンデーション・フレームワークであるPDC-FRSを提案する。具体的には,ユーザが異なるプライバシ保証でデータを共有できるように,プライバシ保護データコントリビューション機構を設計する。
論文 参考訳(メタデータ) (2024-09-12T06:13:07Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - FedGRec: Federated Graph Recommender System with Lazy Update of Latent
Embeddings [108.77460689459247]
プライバシー問題を軽減するためのフェデレートグラフレコメンダシステム(FedGRec)を提案する。
本システムでは,ユーザとサーバは,ユーザとアイテムに対する遅延埋め込みを明示的に記憶する。
我々は,遅延埋め込みを相互作用グラフの欠落のプロキシとして用いることの有効性を検証するために,広範な実験的な評価を行った。
論文 参考訳(メタデータ) (2022-10-25T01:08:20Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
本稿では,各クライアントの特徴を共有カテゴリーのアンカーにマッチさせる新しいFedFM法を提案する。
効率と柔軟性を向上させるため,FedFM-Liteと呼ばれるFedFM変種を提案し,クライアントは同期時間と通信帯域幅のコストを少なくしてサーバと通信する。
論文 参考訳(メタデータ) (2022-10-14T08:11:34Z) - Optimizing Performance of Federated Person Re-identification:
Benchmarking and Analysis [14.545746907150436]
FedReIDは、新しい分散トレーニング手法であるフェデレーション学習を個人に対して実装する。
FedReIDは、クライアントから中央サーバへ、生のデータではなく、モデル更新を集約することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2022-05-24T15:20:32Z) - A Federated Multi-View Deep Learning Framework for Privacy-Preserving
Recommendations [25.484225182093947]
プライバシー保護の勧告は、ユーザーのプライバシーとデータセキュリティに対する懸念から、勢いを増している。
FedRecアルゴリズムは、パーソナライズされたプライバシー保護レコメンデーションを実現するために提案されている。
本稿では,汎用コンテンツベースフェデレーション型マルチビューレコメンデーションフレームワークFLMV-DSSMを提案する。
論文 参考訳(メタデータ) (2020-08-25T04:19:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。