論文の概要: UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer
- arxiv url: http://arxiv.org/abs/2310.20210v4
- Date: Wed, 24 Apr 2024 12:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:37:50.392344
- Title: UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer
- Title(参考訳): UWFormer:半監督型マルチスケール変圧器による水中画像強調
- Authors: Weiwen Chen, Yingtie Lei, Shenghong Luo, Ziyang Zhou, Mingxian Li, Chi-Man Pun,
- Abstract要約: 水中画像は、品質が悪く、色調が歪んだり、コントラストが低かったりすることが多い。
現在のディープラーニング手法は、マルチスケール拡張に欠けるニューラル畳み込みネットワーク(CNN)に依存している。
半教師付き学習によって複数の周波数の画像を拡張するためのマルチスケールトランスフォーマーベースネットワークを提案する。
- 参考スコア(独自算出の注目度): 26.15238399758745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater images often exhibit poor quality, distorted color balance and low contrast due to the complex and intricate interplay of light, water, and objects. Despite the significant contributions of previous underwater enhancement techniques, there exist several problems that demand further improvement: (i) The current deep learning methods rely on Convolutional Neural Networks (CNNs) that lack the multi-scale enhancement, and global perception field is also limited. (ii) The scarcity of paired real-world underwater datasets poses a significant challenge, and the utilization of synthetic image pairs could lead to overfitting. To address the aforementioned problems, this paper introduces a Multi-scale Transformer-based Network called UWFormer for enhancing images at multiple frequencies via semi-supervised learning, in which we propose a Nonlinear Frequency-aware Attention mechanism and a Multi-Scale Fusion Feed-forward Network for low-frequency enhancement. Besides, we introduce a special underwater semi-supervised training strategy, where we propose a Subaqueous Perceptual Loss function to generate reliable pseudo labels. Experiments using full-reference and non-reference underwater benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of both quantity and visual quality.
- Abstract(参考訳): 水中画像は、光、水、物体の複雑な複雑な相互作用のため、品質が悪く、色バランスが歪んだり、コントラストが低かったりすることが多い。
従来の水中強化技術には大きな貢献があったが、さらなる改善を求める問題がいくつかある。
(i)現在のディープラーニング手法は、マルチスケールの強化を欠いた畳み込みニューラルネットワーク(CNN)に依存しており、グローバルな知覚場も制限されている。
(II)実世界の水中データセットの不足は大きな課題となり、合成画像ペアの利用が過度に適合する可能性がある。
上記の問題に対処するため, 半教師付き学習による複数周波数画像の強調を行うUWFormerと呼ばれるマルチスケールトランスフォーマーネットワークを導入し, 低周波数強調のための非線形周波数認識アテンション機構とマルチスケールフュージョンフィードフォワードネットワークを提案する。
さらに,水中における半教師付き訓練戦略を導入し,疑似ラベルを生成するためのサブアキュースパーセプティカルロス関数を提案する。
完全参照型および非参照型水中ベンチマークを用いた実験により,本手法は,量および視覚的品質の両面で最先端の手法より優れていることが示された。
関連論文リスト
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
この研究は、提案されたアプローチの有効性をさらに説明するために、現実世界の水中データセットに関する広範な実験を行っている。
海洋探査、水中ロボティクス、自律水中車両といったリアルタイムの水中アプリケーションでは、ディープラーニングと従来の画像処理技術を組み合わせることで、計算効率の良いフレームワークと優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-18T08:40:26Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - RAUNE-Net: A Residual and Attention-Driven Underwater Image Enhancement
Method [2.6645441842326756]
水中画像強調(UIE)は、水中環境の特徴的な性質のために課題を提起する。
本稿では、RAUNE-Netと呼ばれるより信頼性が高く合理的なUIEネットワークを提案する。
提案手法は,様々な実世界の水中画像に対して,有望な客観的性能と一貫した視覚的結果を得る。
論文 参考訳(メタデータ) (2023-11-01T03:00:07Z) - Dual Adversarial Resilience for Collaborating Robust Underwater Image
Enhancement and Perception [54.672052775549]
本研究では,水中画像の強調と検出を行うために,CARNetと呼ばれる協調的対向レジリエンスネットワークを導入する。
本稿では,ネットワークが様々な種類の攻撃を識別・除去できるように,視覚駆動型と知覚駆動型の両方による同時攻撃訓練戦略を提案する。
実験により,提案手法は画像の高画質化を図り,最先端の手法よりも平均6.71%高い検出精度が得られた。
論文 参考訳(メタデータ) (2023-09-03T06:52:05Z) - Feature Attention Network (FA-Net): A Deep-Learning Based Approach for
Underwater Single Image Enhancement [0.8694819854201992]
本稿では,この問題を解決するために,ディープラーニングと機能アテンションに基づくエンドツーエンドネットワーク(FA-Net)を提案する。
特に,チャンネルアテンション,画素アテンション,長いスキップ接続を伴う残差学習機構を含む残差特徴注意ブロック(RFAB)を提案する。
RFABは、マルチホップ接続上で低周波情報をスキップしながら、高周波情報を学習することに集中することができる。
論文 参考訳(メタデータ) (2023-08-30T08:56:36Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Semantic-aware Texture-Structure Feature Collaboration for Underwater
Image Enhancement [58.075720488942125]
水中画像の強調は海洋工学や水生ロボット工学において重要な技術として注目されている。
我々は,高レベルな意味認識事前学習モデルと協調して,効率的でコンパクトな拡張ネットワークを開発する。
また,提案手法を水中の有意な物体検出タスクに適用し,高レベルの視覚タスクに適した意味認識能力を明らかにする。
論文 参考訳(メタデータ) (2022-11-19T07:50:34Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
本稿では,色チャネルの移動範囲に基づいて,適切な受容場サイズ(コンテキスト)を付与することで,大幅な性能向上が期待できることを示す。
第2の新規性として、学習したマルチコンテキスト特徴を適応的に洗練するための注意的スキップ機構を組み込んだ。
提案するフレームワークはDeep WaveNetと呼ばれ、従来のピクセル単位で機能ベースのコスト関数を使って最適化されている。
論文 参考訳(メタデータ) (2021-06-15T06:47:51Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
本稿では,Ucolor と呼ばれる媒体透過誘導多色空間埋め込みによる水中画像強調ネットワークを提案する。
当社のネットワークは、複数の色空間を埋め込むことにより、水中画像の視覚的品質を効果的に改善できます。
論文 参考訳(メタデータ) (2021-04-27T07:35:30Z) - Underwater Image Enhancement via Learning Water Type Desensitized
Representations [29.05252230912826]
本稿では,これらの課題に対処するため,SCNetと呼ばれる新しい水中画像強調(UIE)フレームワークを提案する。
SCNetは、空間次元とチャネル次元の両方にわたる正規化スキームに基づいており、水型脱感応特徴を学習する鍵となるアイデアである。
2つの実世界のUIEデータセットによる実験結果から,提案手法は多様な水型で画像の強化に有効であることが示された。
論文 参考訳(メタデータ) (2021-02-01T07:34:54Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
本稿では,マルチレベルウェーブレット残差ネットワーク(MWRN)アーキテクチャと,画像復調性能向上のためのプログレッシブトレーニング手法を提案する。
人工ノイズ画像と実世界のノイズ画像の両方で実験したところ、PT-MWRNは最先端のノイズ評価法に対して良好に機能することがわかった。
論文 参考訳(メタデータ) (2020-10-23T14:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。