論文の概要: Low-Dose CT Image Enhancement Using Deep Learning
- arxiv url: http://arxiv.org/abs/2310.20265v1
- Date: Tue, 31 Oct 2023 08:34:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 15:56:50.036632
- Title: Low-Dose CT Image Enhancement Using Deep Learning
- Title(参考訳): ディープラーニングを用いた低次元CT画像強調
- Authors: A.Demir, M.M.A.Shames, O.N.Gerek, S.Ergin, M.Fidan, M.Koc,
M.B.Gulmezoglu, A.Barkana, C.Calisir
- Abstract要約: 電離放射線の少ない線量、特にCT(Computerd tomography)イメージングシステムでの使用が好ましい。
CT画像における放射線線量削減の一般的な方法は、クォータードーズ法として知られている。
近年のディープラーニングアプローチは、低用量アーティファクトのイメージ強化に興味深い可能性をもたらしている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of ionizing radiation for diagnostic imaging is common around
the globe. However, the process of imaging, itself, remains to be a relatively
hazardous operation. Therefore, it is preferable to use as low a dose of
ionizing radiation as possible, particularly in computed tomography (CT)
imaging systems, where multiple x-ray operations are performed for the
reconstruction of slices of body tissues. A popular method for radiation dose
reduction in CT imaging is known as the quarter-dose technique, which reduces
the x-ray dose but can cause a loss of image sharpness. Since CT image
reconstruction from directional x-rays is a nonlinear process, it is
analytically difficult to correct the effect of dose reduction on image
quality. Recent and popular deep-learning approaches provide an intriguing
possibility of image enhancement for low-dose artifacts. Some recent works
propose combinations of multiple deep-learning and classical methods for this
purpose, which over-complicate the process. However, it is observed here that
the straight utilization of the well-known U-NET provides very successful
results for the correction of low-dose artifacts. Blind tests with actual
radiologists reveal that the U-NET enhanced quarter-dose CT images not only
provide an immense visual improvement over the low-dose versions, but also
become diagnostically preferable images, even when compared to their full-dose
CT versions.
- Abstract(参考訳): 電離放射線の診断イメージングへの応用は世界中で一般的である。
しかし、イメージングのプロセス自体は、比較的危険な操作である。
したがって、特にCT(Computed tomography)イメージングシステムにおいて、生体組織のスライスを再構築するために複数のX線操作を行う場合において、可能な限り低用量の電離放射線としての使用が好ましい。
CT画像における放射線線量削減の一般的な方法は、X線線量を減らすが、画像のシャープネスを失う可能性がある四分線法として知られている。
指向性X線からのCT画像再構成は非線形過程であるため,線量低減効果の補正が画像品質に与える影響は解析的に困難である。
近年のディープラーニングアプローチは、低用量アーティファクトのイメージ強化に興味深い可能性をもたらしている。
最近の研究では、この目的のために複数のディープラーニングと古典的手法の組み合わせを提案している。
しかし、よく知られたU-NETの直接利用は、低線量のアーティファクトの修正に非常に成功した結果をもたらすことが観察された。
実際の放射線技師によるブラインドテストでは、U-NETの強化された4次元CT画像は、低線量バージョンよりも大きな視覚的改善を提供するだけでなく、フル線量CT画像と比較して診断上好ましい画像になることが示された。
関連論文リスト
- Step-Calibrated Diffusion for Biomedical Optical Image Restoration [47.191704042917394]
再生ステップキャリブレーション拡散(Resorative Step-Calibrated Diffusion, RCD)は、画像修復法である。
RSCDは、画像復元問題を拡散ベース画像生成タスクの完了ステップとみなしている。
RSCDは、画像品質と知覚評価指標の両方において、他の広く使われている未使用画像復元方法よりも優れている。
論文 参考訳(メタデータ) (2024-03-20T15:38:53Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
生成した放射場に基づく不確実性を考慮したMedNeRF(UMedNeRF)ネットワークを提案する。
我々は,CTプロジェクションレンダリングの結果を1つのX線で示し,生成した放射場に基づく他の手法との比較を行った。
論文 参考訳(メタデータ) (2023-11-10T02:47:15Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
放射線線量が少ないと、ノイズやアーティファクトが増加し、臨床診断に大きな影響を及ぼす可能性がある。
高品質な全身低線量CT(LDCT)画像を得るため,従来の深層学習に基づく研究は様々なネットワークアーキテクチャを導入している。
本稿では,NDCT画像から抽出した知識を活用する,新しいタスク内知識伝達手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T06:46:38Z) - AI-Enabled Ultra-Low-Dose CT Reconstruction [8.135337706680097]
本稿では,X線撮影と同等の低線量で画像品質を診断できるAIを用いたCT再構成法を提案する。
臨床データセットの再構成結果から,36個のプロジェクションからのSUGARを用いて優れた画像の再構成が可能であることが示された。
論文 参考訳(メタデータ) (2021-06-17T22:13:11Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Deep-Learning Driven Noise Reduction for Reduced Flux Computed
Tomography [0.0]
深層畳み込みニューラルネットワーク(dcnn)は、低品質、低用量、高用量、高用量の画像にマッピングするために使用できる。
トレーニング時間を増やすことなく、マイクロCTによるデータセットに基づく現在の結果を強調表示し、DCNN結果を改善するためのトランスファーラーニングを適用します。
論文 参考訳(メタデータ) (2021-01-18T23:31:37Z) - Probabilistic self-learning framework for Low-dose CT Denoising [1.8734449181723827]
被曝の減少は、被曝量を減少させ、したがって放射線関連のリスクを減少させる。
低用量CT(LDCT)を診断するためにニューラルネットワークをトレーニングするために、改良されたディープラーニングを使用することができる
論文 参考訳(メタデータ) (2020-05-30T17:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。