論文の概要: A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs
- arxiv url: http://arxiv.org/abs/2310.20367v1
- Date: Tue, 31 Oct 2023 11:23:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 15:33:56.286740
- Title: A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs
- Title(参考訳): 住宅電力負荷プロファイルをクラスタリングして需要対応プログラムを構築する機械学習フレームワーク
- Authors: Vasilis Michalakopoulos, Elissaios Sarmas, Ioannis Papias, Panagiotis
Skaloumpakas, Vangelis Marinakis, Haris Doukas
- Abstract要約: 実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
本稿では,実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Load shapes derived from smart meter data are frequently employed to analyze
daily energy consumption patterns, particularly in the context of applications
like Demand Response (DR). Nevertheless, one of the most important challenges
to this endeavor lies in identifying the most suitable consumer clusters with
similar consumption behaviors. In this paper, we present a novel machine
learning based framework in order to achieve optimal load profiling through a
real case study, utilizing data from almost 5000 households in London. Four
widely used clustering algorithms are applied specifically K-means, K-medoids,
Hierarchical Agglomerative Clustering and Density-based Spatial Clustering. An
empirical analysis as well as multiple evaluation metrics are leveraged to
assess those algorithms. Following that, we redefine the problem as a
probabilistic classification one, with the classifier emulating the behavior of
a clustering algorithm,leveraging Explainable AI (xAI) to enhance the
interpretability of our solution. According to the clustering algorithm
analysis the optimal number of clusters for this case is seven. Despite that,
our methodology shows that two of the clusters, almost 10\% of the dataset,
exhibit significant internal dissimilarity and thus it splits them even further
to create nine clusters in total. The scalability and versatility of our
solution makes it an ideal choice for power utility companies aiming to segment
their users for creating more targeted Demand Response programs.
- Abstract(参考訳): スマートメーターデータから得られる負荷形状は、特に需要応答(DR)のようなアプリケーションにおいて、日々のエネルギー消費パターンを分析するために頻繁に使用される。
それでも、この取り組みにおける最も重要な課題の1つは、同様の消費行動を持つ最も適切なコンシューマクラスタを特定することである。
本稿では, ロンドンの約5000世帯のデータを活用して, 実ケーススタディを通じて最適な負荷プロファイルを実現するための, 機械学習に基づく新しいフレームワークを提案する。
広く使われている4つのクラスタリングアルゴリズムは、特にK平均、Kメノイド、階層的集約クラスタリング、密度に基づく空間クラスタリングである。
経験的分析と複数の評価指標を利用してそれらのアルゴリズムを評価する。
その後、クラスタリングアルゴリズムの動作をエミュレートし、説明可能なAI(xAI)を平均化し、ソリューションの解釈可能性を高めることにより、確率的分類として問題を再定義する。
クラスタリングアルゴリズムの分析によると、このケースの最適なクラスタ数は7である。
それにもかかわらず、我々の方法論では、2つのクラスタ(データセットのほぼ10\%)が大きな内部的相違点を示しており、それらをさらに分割して合計9つのクラスタを作成する。
我々のソリューションのスケーラビリティと汎用性は、よりターゲットとする需要対応プログラムを作成するためにユーザーを分割しようとする電力会社にとって理想的な選択肢になります。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - Targeted demand response for flexible energy communities using
clustering techniques [2.572906392867547]
目的は、イタリアの分散エネルギーコミュニティにおける消費者の消費行動を変えることである。
一般的な3つの機械学習アルゴリズム、すなわちk-means、k-medoids、集約クラスタリングが採用されている。
本研究で提案される新しい指標,すなわちピークパフォーマンススコア(PPS)を含む複数の指標を用いた手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-01T02:29:30Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
我々はKnAC(Knowledge Augmented Clustering)を紹介します。
KnACは任意のクラスタリングアルゴリズムの拡張として機能し、アプローチを堅牢でモデルに依存しないものにすることができる。
論文 参考訳(メタデータ) (2021-12-16T10:13:47Z) - A review of systematic selection of clustering algorithms and their
evaluation [0.0]
本稿では,クラスタリングアルゴリズムとそれに対応する検証概念の体系的選択ロジックを同定することを目的とする。
目標は、潜在的なユーザが自分のニーズと基盤となるデータクラスタリングの問題の性質に最も適したアルゴリズムを選択できるようにすることだ。
論文 参考訳(メタデータ) (2021-06-24T07:01:46Z) - DAC: Deep Autoencoder-based Clustering, a General Deep Learning
Framework of Representation Learning [0.0]
dac,deep autoencoder-based clustering,深層ニューロンネットワークを用いてクラスタリング表現を学ぶためのデータ駆動フレームワークを提案する。
実験結果から,KMeansクラスタリングアルゴリズムの性能をさまざまなデータセット上で効果的に向上させることができた。
論文 参考訳(メタデータ) (2021-02-15T11:31:00Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。