FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models
- URL: http://arxiv.org/abs/2310.20410v3
- Date: Wed, 5 Jun 2024 15:39:26 GMT
- Title: FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models
- Authors: Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, Wei Wang,
- Abstract summary: FollowBench is a benchmark for Fine-grained Constraints Following Benchmark for Large Language Models.
We introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level.
By evaluating 13 popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work.
- Score: 79.62191017182518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to follow instructions is crucial for Large Language Models (LLMs) to handle various real-world applications. Existing benchmarks primarily focus on evaluating pure response quality, rather than assessing whether the response follows constraints stated in the instruction. To fill this research gap, in this paper, we propose FollowBench, a Multi-level Fine-grained Constraints Following Benchmark for LLMs. FollowBench comprehensively includes five different types (i.e., Content, Situation, Style, Format, and Example) of fine-grained constraints. To enable a precise constraint following estimation on diverse difficulties, we introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level. To assess whether LLMs' outputs have satisfied every individual constraint, we propose to prompt strong LLMs with constraint-evolution paths to handle challenging open-ended instructions. By evaluating 13 closed-source and open-source popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work. The data and code are publicly available at https://github.com/YJiangcm/FollowBench.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models [39.114513139453756]
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints.
We design a pipeline to construct datasets with high-quality outputs automatically.
To fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method.
We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability.
arXiv Detail & Related papers (2025-01-09T03:34:07Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
We introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions.
To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline.
Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback.
arXiv Detail & Related papers (2024-10-09T01:25:10Z) - Control Large Language Models via Divide and Conquer [94.48784966256463]
This paper investigates controllable generation for large language models (LLMs) with prompt-based control, focusing on Lexically Constrained Generation (LCG)
We evaluate the performance of LLMs on satisfying lexical constraints with prompt-based control, as well as their efficacy in downstream applications.
arXiv Detail & Related papers (2024-10-06T21:20:06Z) - SysBench: Can Large Language Models Follow System Messages? [30.701602680394686]
Large Language Models (LLMs) have become instrumental across various applications, with the customization of these models to specific scenarios becoming increasingly critical.
Despite the recognized potential of system messages to optimize AI-driven solutions, there is a notable absence of a benchmark for evaluating how well LLMs follow system messages.
We introduce SysBench, a benchmark that systematically analyzes system message following ability in terms of three limitations of existing LLMs.
arXiv Detail & Related papers (2024-08-20T15:33:16Z) - CFBench: A Comprehensive Constraints-Following Benchmark for LLMs [33.19756888719116]
CFBench is a large-scale Comprehensive Constraints Following Benchmark for Large Language Models.
It features 1,000 curated samples that cover more than 200 real-life scenarios and over 50 NLP tasks.
CFBench meticulously compiles constraints from real-world instructions and constructs an innovative systematic framework for constraint types.
arXiv Detail & Related papers (2024-08-02T09:03:48Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - Benchmarking Large Language Models on Controllable Generation under
Diversified Instructions [34.89012022437519]
Large language models (LLMs) have exhibited impressive instruction-following capabilities.
It is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions.
We propose a new benchmark CoDI-Eval to evaluate LLMs' responses to instructions with various constraints.
arXiv Detail & Related papers (2024-01-01T07:35:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.