論文の概要: Raising the ClaSS of Streaming Time Series Segmentation
- arxiv url: http://arxiv.org/abs/2310.20431v3
- Date: Fri, 26 Apr 2024 11:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 17:58:08.537900
- Title: Raising the ClaSS of Streaming Time Series Segmentation
- Title(参考訳): 時系列セグメンテーションのクレイジング
- Authors: Arik Ermshaus, Patrick Schäfer, Ulf Leser,
- Abstract要約: 本稿では,ストリーミング時系列セグメンテーションのための新しい,効率的かつ高精度なアルゴリズムであるClaSSを紹介する。
ClaSSは8つの最先端の競合よりはるかに正確である。
また、Apache Flinkストリーミングエンジンでは、平均スループットが毎秒1Kのデータポイントを持つウィンドウオペレータとしてClaSSを提供しています。
- 参考スコア(独自算出の注目度): 3.572107803162503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ubiquitous sensors today emit high frequency streams of numerical measurements that reflect properties of human, animal, industrial, commercial, and natural processes. Shifts in such processes, e.g. caused by external events or internal state changes, manifest as changes in the recorded signals. The task of streaming time series segmentation (STSS) is to partition the stream into consecutive variable-sized segments that correspond to states of the observed processes or entities. The partition operation itself must in performance be able to cope with the input frequency of the signals. We introduce ClaSS, a novel, efficient, and highly accurate algorithm for STSS. ClaSS assesses the homogeneity of potential partitions using self-supervised time series classification and applies statistical tests to detect significant change points (CPs). In our experimental evaluation using two large benchmarks and six real-world data archives, we found ClaSS to be significantly more precise than eight state-of-the-art competitors. Its space and time complexity is independent of segment sizes and linear only in the sliding window size. We also provide ClaSS as a window operator with an average throughput of 1k data points per second for the Apache Flink streaming engine.
- Abstract(参考訳): 今日、ユビキタスセンサーは、人間、動物、工業、商業、および自然の過程の特性を反映する数値測定の高周波ストリームを出力している。
このようなプロセスにおけるシフト、例えば、外部イベントや内部状態の変化によって引き起こされるgは、記録された信号の変化として表される。
ストリーミング時系列セグメンテーション(STSS)のタスクは、ストリームを観測されたプロセスやエンティティの状態に対応する連続的な可変サイズのセグメントに分割することである。
パーティション演算自体のパフォーマンスは、信号の入力周波数に対処できなければならない。
本稿では,新しい,効率的かつ高精度なSTSSアルゴリズムであるClaSSを紹介する。
ClaSSは、自己教師付き時系列分類を用いて電位分割の均一性を評価し、統計的テストを適用して重要な変化点(CP)を検出する。
2つの大規模なベンチマークと6つの実世界のデータアーカイブを用いた実験の結果、ClaSSは8つの最先端の競合相手よりもはるかに正確であることが判明した。
その空間と時間の複雑さはセグメントサイズとは独立であり、スライディングウィンドウサイズのみに線形である。
また、Apache Flinkストリーミングエンジンでは、平均スループットが毎秒1Kのデータポイントを持つウィンドウオペレータとしてClaSSを提供しています。
関連論文リスト
- Continual Learning in the Frequency Domain [22.415936450558334]
周波数領域における連続学習(CLFD)と呼ばれる新しいフレームワークを提案する。
特徴抽出器の入力特徴について、CLFDはウェーブレット変換を用いて元の入力画像を周波数領域にマッピングする。
クラウド環境とエッジ環境の両方で実施された実験により、CLFDは精度とトレーニング効率の両方において、最先端(SOTA)手法の性能を一貫して改善することが示された。
論文 参考訳(メタデータ) (2024-10-09T07:57:47Z) - Path-adaptive Spatio-Temporal State Space Model for Event-based Recognition with Arbitrary Duration [9.547947845734992]
イベントカメラはバイオインスパイアされたセンサーで、強度の変化を非同期に捉え、イベントストリームを出力する。
本稿では, PAST-Act と呼ばれる新しいフレームワークを提案する。
私たちはまた、コミュニティの利益のために任意の期間で、ArDVS100という名前の分レベルのイベントベースの認識データセットを構築しました。
論文 参考訳(メタデータ) (2024-09-25T14:08:37Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
時系列予測は、金融、交通、エネルギー、医療など、さまざまな産業領域において重要な役割を果たしてきた。
最多ベースの予測手法は、ポイントワイドマッピングと情報のボトルネックに悩まされる。
本稿では、時系列予測のための周波数領域上に構築された、シンプルで効果的なアーキテクチャであるFreTSを提案する。
論文 参考訳(メタデータ) (2023-11-10T17:05:13Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
リアルタイム位置情報システム(RTLS)は、人間の動きパターンからデータを収集することができる。
本研究の目的は、小さな領域における人間の動きパターンを分類する自動化された枠組みを設計し、評価することである。
論文 参考訳(メタデータ) (2023-03-10T14:46:42Z) - Autoencoder Based Iterative Modeling and Multivariate Time-Series
Subsequence Clustering Algorithm [0.0]
本稿では、過渡時系列データ(MTSD)における変化点の検出と対応する部分列の同定のためのアルゴリズムを提案する。
我々は、リカレントニューラルネットワーク(RNN)ベースのオートエンコーダ(AE)を用いて、入ってくるデータに基づいて反復的に訓練する。
同定されたサブシーケンスのモデルを保存し、繰り返しサブシーケンスの認識と高速オフラインクラスタリングに使用する。
論文 参考訳(メタデータ) (2022-09-09T09:59:56Z) - ClaSP -- Parameter-free Time Series Segmentation [6.533695062182296]
時系列セグメンテーションのための新しい,高精度かつドメインに依存しない手法である ClaSP を提案する。
ClaSP は、TS を2つの部分に階層的に分割する。変更点は、可能な分割点ごとにバイナリTS分類器を訓練し、それぞれの分割からサブシーケンスを特定するのに最適な1つの分割を選択することによって決定される。
実験では,115データセットのベンチマークを用いて,ClaSPが精度で高い性能を示し,高速かつスケーラブルであることを示す。
論文 参考訳(メタデータ) (2022-07-28T10:05:53Z) - Efficient Global-Local Memory for Real-time Instrument Segmentation of
Robotic Surgical Video [53.14186293442669]
手術器具の知覚における重要な手がかりとして,隣接するフレームからの局所的時間依存性と,長距離における大域的意味的相関があげられる。
本稿では,グローバルとローカルの両方の時間的知識を関連付ける新しいデュアルメモリネットワーク(DMNet)を提案する。
本手法は,実時間速度を維持しながらセグメント化精度を向上する手法である。
論文 参考訳(メタデータ) (2021-09-28T10:10:14Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Seriesは、時系列分類のための音響モデルをプログラムする新しいエンドツーエンドアプローチである。
V2Sは20のタスクで性能が優れるか、最先端のメソッドと結びついているかを示し、平均精度を1.84%向上させる。
論文 参考訳(メタデータ) (2021-06-17T07:59:15Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
Separable Convolutional LSTM(SepConvLSTM)と予め訓練されたMobileNetを活用した効率的な2ストリームディープラーニングアーキテクチャを提案する。
SepConvLSTMは、ConvLSTMの各ゲートの畳み込み操作を深さ方向に分離可能な畳み込みに置き換えて構築されます。
我々のモデルは、大きくて挑戦的なrwf-2000データセットの精度を2%以上上回っている。
論文 参考訳(メタデータ) (2021-02-21T12:01:48Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。