One-shot backpropagation for multi-step prediction in physics-based
system identification -- EXTENDED VERSION
- URL: http://arxiv.org/abs/2310.20567v2
- Date: Tue, 21 Nov 2023 09:19:06 GMT
- Title: One-shot backpropagation for multi-step prediction in physics-based
system identification -- EXTENDED VERSION
- Authors: Cesare Donati, Martina Mammarella, Fabrizio Dabbene, Carlo Novara,
Constantino Lagoa
- Abstract summary: This paper presents a physics-based framework for the identification of dynamical systems, in which the physical and structural insights are reflected directly into a backpropagation-based learning algorithm.
The derived algorithm has been exploited to identify the unknown inertia matrix of a space debris, and the results show the reliability of the method in capturing the physical adherence of the estimated parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The aim of this paper is to present a novel physics-based framework for the
identification of dynamical systems, in which the physical and structural
insights are reflected directly into a backpropagation-based learning
algorithm. The main result is a method to compute in closed form the gradient
of a multi-step loss function, while enforcing physical properties and
constraints. The derived algorithm has been exploited to identify the unknown
inertia matrix of a space debris, and the results show the reliability of the
method in capturing the physical adherence of the estimated parameters.
Related papers
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
In this work, we aim to introduce the first highly non-supervised dimensionality reduction performance metric.
To test its feasibility, this metric has been used to evaluate the performance of the most commonly used dimension reduction algorithms.
A new parameterized problem instance generator has been constructed in the form of a function generator.
arXiv Detail & Related papers (2023-03-17T11:59:33Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Assembly Planning from Observations under Physical Constraints [65.83676649042623]
The proposed algorithm uses a simple combination of physical stability constraints, convex optimization and Monte Carlo tree search to plan assemblies.
It is efficient and, most importantly, robust to the errors in object detection and pose estimation unavoidable in any real robotic system.
arXiv Detail & Related papers (2022-04-20T16:51:07Z) - Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery [16.740247586153085]
We show how to leverage gradient-based learning to solve discrete optimization problems.
Our approach is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators)
We empirically demonstrate the performance and flexibility of GLODISMO in several signal recovery applications.
arXiv Detail & Related papers (2022-02-07T18:27:08Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Accurately Solving Physical Systems with Graph Learning [22.100386288615006]
We introduce a novel method to accelerate iterative solvers for physical systems with graph networks.
Unlike existing methods that aim to learn physical systems in an end-to-end manner, our approach guarantees long-term stability.
Our method improves the run time performance of traditional iterative solvers.
arXiv Detail & Related papers (2020-06-06T15:48:34Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z) - Identifying Mechanical Models through Differentiable Simulations [16.86640234046472]
This paper proposes a new method for manipulating unknown objects through a sequence of non-prehensile actions.
The proposed method leverages recent progress in differentiable physics models to identify unknown mechanical properties of manipulated objects.
arXiv Detail & Related papers (2020-05-11T20:19:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.