論文の概要: Farthest Greedy Path Sampling for Two-shot Recommender Search
- arxiv url: http://arxiv.org/abs/2310.20705v1
- Date: Tue, 31 Oct 2023 17:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 13:39:50.125244
- Title: Farthest Greedy Path Sampling for Two-shot Recommender Search
- Title(参考訳): 2発レコメンデータ探索のための最遠のグリーディパスサンプリング
- Authors: Yufan Cao, Tunhou Zhang, Wei Wen, Feng Yan, Hai Li, Yiran Chen
- Abstract要約: 本稿では,Farthest Greedy Path Smpling (FGPS)を紹介した。
FGPSはパスの多様性を高め、より包括的なスーパーネット探索を促進するとともに、パス品質を強調し、将来的なアーキテクチャの効果的な識別と利用を保証する。
提案手法は,手作業で設計したモデルとほとんどのNASベースのモデルの両方より優れた結果が得られる。
- 参考スコア(独自算出の注目度): 15.754449293550744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight-sharing Neural Architecture Search (WS-NAS) provides an efficient
mechanism for developing end-to-end deep recommender models. However, in
complex search spaces, distinguishing between superior and inferior
architectures (or paths) is challenging. This challenge is compounded by the
limited coverage of the supernet and the co-adaptation of subnet weights, which
restricts the exploration and exploitation capabilities inherent to
weight-sharing mechanisms. To address these challenges, we introduce Farthest
Greedy Path Sampling (FGPS), a new path sampling strategy that balances path
quality and diversity. FGPS enhances path diversity to facilitate more
comprehensive supernet exploration, while emphasizing path quality to ensure
the effective identification and utilization of promising architectures. By
incorporating FGPS into a Two-shot NAS (TS-NAS) framework, we derive
high-performance architectures. Evaluations on three Click-Through Rate (CTR)
prediction benchmarks demonstrate that our approach consistently achieves
superior results, outperforming both manually designed and most NAS-based
models.
- Abstract(参考訳): ウェイトシェアリングニューラルアーキテクチャサーチ(WS-NAS)は、エンドツーエンドのディープレコメンデータモデルを開発するための効率的なメカニズムを提供する。
しかし、複雑な探索空間では、上位のアーキテクチャと下位のアーキテクチャ(あるいはパス)の区別が難しい。
この課題は、スーパーネットの限られた範囲とサブネット重量の共適応によって複雑化され、重量共有機構に固有の探索と利用能力が制限される。
これらの課題に対処するために、パス品質と多様性のバランスをとる新しい経路サンプリング戦略であるFarthest Greedy Path Smpling (FGPS)を導入する。
FGPSはパスの多様性を高め、より包括的なスーパーネット探索を促進するとともに、パス品質を強調し、将来的なアーキテクチャの効果的な識別と利用を保証する。
FGPSを2ショットNAS(Two-shot NAS)フレームワークに組み込むことで、高性能アーキテクチャを導出する。
CTR(Click-Through Rate)予測ベンチマークによる評価から,本手法は手動設計モデルとほとんどのNASモデルよりも優れた結果が得られることが示された。
関連論文リスト
- Generalizable Lightweight Proxy for Robust NAS against Diverse
Perturbations [59.683234126055694]
最近のニューラルアーキテクチャサーチ(NAS)フレームワークは、与えられた条件に対して最適なアーキテクチャを見つけるのに成功している。
クリーン画像と摂動画像の両方の特徴,パラメータ,勾配の整合性を考慮した,軽量で堅牢なゼロコストプロキシを提案する。
提案手法は,多種多様な摂動にまたがる堅牢性を示す一般化可能な特徴を学習可能な,効率的かつ迅速なニューラルアーキテクチャの探索を容易にする。
論文 参考訳(メタデータ) (2023-06-08T08:34:26Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
NASRecは,1つのスーパーネットをトレーニングし,重量共有により豊富なモデル/サブアーキテクチャを効率的に生成するパラダイムである。
CTR(Click-Through Rates)の3つの予測ベンチマークの結果,NASRecは手動設計モデルと既存のNAS手法の両方より優れていることが示された。
論文 参考訳(メタデータ) (2022-07-14T20:15:11Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
この作業は、ニューラルネットワークサーチ(NAS)のための原則的で統一的なトレーニングフリーフレームワークの設計を目標としている。
NASは、高性能ニューラルネットワークの発見を自動化するために爆発的に研究されてきたが、資源消費に悩まされ、しばしば訓練や近似によって探索バイアスを引き起こす。
我々は,検索ネットワークの「TEG」特性を解消し,NASを理解し,加速するための統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-26T17:52:07Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
モデルガイド設計とNAS(MoD-NAS)をつなぐ新しいアプローチを提案する。
MoD-NASは、再利用可能な幅探索戦略と密結合された探索ブロックを用いて、各層の操作を自動的に選択する。
いくつかの一般的なデータセットに対する実験結果から、我々のMoD-NASは現在の最先端手法よりもPSNR性能が向上していることが示された。
論文 参考訳(メタデータ) (2021-04-06T14:03:01Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
敵攻撃の最近の進歩は、ニューラルアーキテクチャサーチ(NAS)によって探索されたディープニューラルネットワークの脆弱性を示している
本稿では,ニューラルネットワークアーキテクチャの性能,堅牢性,資源制約を考慮し,ニューラルネットワークアーキテクチャを探索する,効率的で効率的かつロバストなニューラルネットワーク探索手法を提案する。
ベンチマークデータセットを用いた実験により,提案手法は,モデルサイズと同等の分類精度で,逆向きに頑健なアーキテクチャを見出すことができることがわかった。
論文 参考訳(メタデータ) (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
本研究では,探索空間からニューラルネットワークをスムーズにエンコードし,正確に再構築できる2面変分グラフオートエンコーダを提案する。
ENASアプローチ,NAS-Bench-101およびNAS-Bench-201探索空間で定義されたニューラルネットワークに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-09T17:05:41Z) - Hyperparameter Optimization in Neural Networks via Structured Sparse
Recovery [54.60327265077322]
スパースリカバリ法のレンズを用いて,ニューラルネットワークの自動設計における2つの重要な問題について検討する。
本論文の前半では,HPOと構造的スパースリカバリの新たな接続を確立する。
本論文の第2部では,NASと構造的スパース回復の関連性を確立する。
論文 参考訳(メタデータ) (2020-07-07T00:57:09Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z) - Powering One-shot Topological NAS with Stabilized Share-parameter Proxy [65.09967910722932]
ワンショットNAS法は、高性能モデルを発見するための訓練効率と能力が際立ったため、研究コミュニティから大きな関心を集めている。
本研究では,大規模Topology Augmented Search Spaceにおいて,高性能なネットワークアーキテクチャを探索することにより,ワンショットNASの向上を図る。
提案手法は,ImageNet 上の Multiply-Adds (MAdds) 制約下での最先端性能を実現する。
論文 参考訳(メタデータ) (2020-05-21T08:18:55Z) - Geometry-Aware Gradient Algorithms for Neural Architecture Search [41.943045315986744]
重み付けによるNASを理解するために,単一レベルの経験的リスク最小化の研究を議論する。
本稿では,この最適化の基盤となる構造を利用して,疎度なアーキテクチャパラメータを返却する幾何対応フレームワークを提案する。
コンピュータビジョンにおける最新のNASベンチマークにおいて、最先端の精度を実現する。
論文 参考訳(メタデータ) (2020-04-16T17:46:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。