Farthest Greedy Path Sampling for Two-shot Recommender Search
- URL: http://arxiv.org/abs/2310.20705v1
- Date: Tue, 31 Oct 2023 17:59:14 GMT
- Title: Farthest Greedy Path Sampling for Two-shot Recommender Search
- Authors: Yufan Cao, Tunhou Zhang, Wei Wen, Feng Yan, Hai Li, Yiran Chen
- Abstract summary: We introduce Farthest Greedy Path Sampling (FGPS), a new path sampling strategy that balances path quality and diversity.
FGPS enhances path diversity to facilitate more comprehensive supernet exploration, while emphasizing path quality to ensure the effective identification and utilization of promising architectures.
Our approach consistently achieves superior results, outperforming both manually designed and most NAS-based models.
- Score: 15.754449293550744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weight-sharing Neural Architecture Search (WS-NAS) provides an efficient
mechanism for developing end-to-end deep recommender models. However, in
complex search spaces, distinguishing between superior and inferior
architectures (or paths) is challenging. This challenge is compounded by the
limited coverage of the supernet and the co-adaptation of subnet weights, which
restricts the exploration and exploitation capabilities inherent to
weight-sharing mechanisms. To address these challenges, we introduce Farthest
Greedy Path Sampling (FGPS), a new path sampling strategy that balances path
quality and diversity. FGPS enhances path diversity to facilitate more
comprehensive supernet exploration, while emphasizing path quality to ensure
the effective identification and utilization of promising architectures. By
incorporating FGPS into a Two-shot NAS (TS-NAS) framework, we derive
high-performance architectures. Evaluations on three Click-Through Rate (CTR)
prediction benchmarks demonstrate that our approach consistently achieves
superior results, outperforming both manually designed and most NAS-based
models.
Related papers
- Generalizable Lightweight Proxy for Robust NAS against Diverse
Perturbations [59.683234126055694]
Recent neural architecture search (NAS) frameworks have been successful in finding optimal architectures for given conditions.
We propose a novel lightweight robust zero-cost proxy that considers the consistency across features, parameters, and gradients of both clean and perturbed images.
Our approach facilitates an efficient and rapid search for neural architectures capable of learning generalizable features that exhibit robustness across diverse perturbations.
arXiv Detail & Related papers (2023-06-08T08:34:26Z) - NASRec: Weight Sharing Neural Architecture Search for Recommender
Systems [40.54254555949057]
We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing.
Our results on three Click-Through Rates (CTR) prediction benchmarks show that NASRec can outperform both manually designed models and existing NAS methods.
arXiv Detail & Related papers (2022-07-14T20:15:11Z) - Understanding and Accelerating Neural Architecture Search with
Training-Free and Theory-Grounded Metrics [117.4281417428145]
This work targets designing a principled and unified training-free framework for Neural Architecture Search (NAS)
NAS has been explosively studied to automate the discovery of top-performer neural networks, but suffers from heavy resource consumption and often incurs search bias due to truncated training or approximations.
We present a unified framework to understand and accelerate NAS, by disentangling "TEG" characteristics of searched networks.
arXiv Detail & Related papers (2021-08-26T17:52:07Z) - Searching Efficient Model-guided Deep Network for Image Denoising [61.65776576769698]
We present a novel approach by connecting model-guided design with NAS (MoD-NAS)
MoD-NAS employs a highly reusable width search strategy and a densely connected search block to automatically select the operations of each layer.
Experimental results on several popular datasets show that our MoD-NAS has achieved even better PSNR performance than current state-of-the-art methods.
arXiv Detail & Related papers (2021-04-06T14:03:01Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS)
We propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration.
Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
arXiv Detail & Related papers (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Hyperparameter Optimization in Neural Networks via Structured Sparse
Recovery [54.60327265077322]
We study two important problems in the automated design of neural networks through the lens of sparse recovery methods.
In the first part of this paper, we establish a novel connection between HPO and structured sparse recovery.
In the second part of this paper, we establish a connection between NAS and structured sparse recovery.
arXiv Detail & Related papers (2020-07-07T00:57:09Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - Powering One-shot Topological NAS with Stabilized Share-parameter Proxy [65.09967910722932]
One-shot NAS method has attracted much interest from the research community due to its remarkable training efficiency and capacity to discover high performance models.
In this work, we try to enhance the one-shot NAS by exploring high-performing network architectures in our large-scale Topology Augmented Search Space.
The proposed method achieves state-of-the-art performance under Multiply-Adds (MAdds) constraint on ImageNet.
arXiv Detail & Related papers (2020-05-21T08:18:55Z) - Geometry-Aware Gradient Algorithms for Neural Architecture Search [41.943045315986744]
We argue for the study of single-level empirical risk minimization to understand NAS with weight-sharing.
We present a geometry-aware framework that exploits the underlying structure of this optimization to return sparse architectural parameters.
We achieve state-of-the-art accuracy on the latest NAS benchmarks in computer vision.
arXiv Detail & Related papers (2020-04-16T17:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.