論文の概要: Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation
- arxiv url: http://arxiv.org/abs/2311.00055v1
- Date: Tue, 31 Oct 2023 18:03:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 16:10:50.313879
- Title: Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation
- Title(参考訳): メタ表現による不均一表データのトレーニングフリー一般化
- Authors: Han-Jia Ye, Qi-Le Zhou, De-Chuan Zhan
- Abstract要約: メタ表現(TabPTM)を用いたタブラルデータ事前学習を提案する。
深層ニューラルネットワークは、これらのメタ表現とデータセット固有の分類信頼度を関連付けるように訓練される。
実験により、TabPTMは、数ショットのシナリオであっても、新しいデータセットで有望なパフォーマンスを達成することを確認した。
- 参考スコア(独自算出の注目度): 67.30538142519067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tabular data is prevalent across various machine learning domains. Yet, the
inherent heterogeneities in attribute and class spaces across different tabular
datasets hinder the effective sharing of knowledge, limiting a tabular model to
benefit from other datasets. In this paper, we propose Tabular data
Pre-Training via Meta-representation (TabPTM), which allows one tabular model
pre-training on a set of heterogeneous datasets. Then, this pre-trained model
can be directly applied to unseen datasets that have diverse attributes and
classes without additional training. Specifically, TabPTM represents an
instance through its distance to a fixed number of prototypes, thereby
standardizing heterogeneous tabular datasets. A deep neural network is then
trained to associate these meta-representations with dataset-specific
classification confidences, endowing TabPTM with the ability of training-free
generalization. Experiments validate that TabPTM achieves promising performance
in new datasets, even under few-shot scenarios.
- Abstract(参考訳): 表データはさまざまな機械学習領域にまたがる。
しかし、異なる表型データセットにまたがる属性とクラス空間の固有の不均一性は、知識の効果的な共有を妨げる。
本稿では,TabPTM(Tabular data Pre-Training via Meta-representation)を提案する。
そして、この事前トレーニングされたモデルは、追加のトレーニングなしで多様な属性とクラスを持つ未確認データセットに直接適用することができる。
具体的には、TabPTMはそのインスタンスを一定数のプロトタイプまでの距離で表現し、不均一な表形式のデータセットを標準化する。
深層ニューラルネットワークは、これらのメタ表現をデータセット固有の分類信頼度に関連付けるように訓練され、TabPTMとトレーニング不要の一般化能力を提供する。
実験により、tabptmが新しいデータセットで有望なパフォーマンスを達成することが検証される。
関連論文リスト
- Zero-shot Meta-learning for Tabular Prediction Tasks with Adversarially Pre-trained Transformer [2.1677183904102257]
本稿では、実世界のデータセットを事前学習することなく、表形式の予測タスクでゼロショットメタ学習を行うことのできるAdversarially Pre-trained Transformer(APT)を提案する。
APTは、異なる合成データセットで意図的にモデルに挑戦する敵対的な合成データエージェントで事前訓練されている。
筆者らのフレームワークは,データセットの特徴をフィルタリングすることなく,小さな分類タスクにおける最先端のパフォーマンスと一致していることを示す。
論文 参考訳(メタデータ) (2025-02-06T23:58:11Z) - Cross-Table Pretraining towards a Universal Function Space for Heterogeneous Tabular Data [35.61663559675556]
クロスデータセット事前トレーニングは、様々な分野で顕著な成功を収めている。
本研究では,多目的な下流表予測タスクのためのクロステーブル事前学習型トランスであるXTFormerを提案する。
我々の手法は、XTFormerを事前訓練して、全ての潜在的な機能ターゲットマッピングを含む「メタ関数」空間を確立することである。
論文 参考訳(メタデータ) (2024-06-01T03:24:31Z) - Tabular Few-Shot Generalization Across Heterogeneous Feature Spaces [43.67453625260335]
異種特徴空間を持つデータセット間での知識共有を含む数ショット学習のための新しいアプローチを提案する。
FLATはデータセットとその個々の列の低次元埋め込みを学習し、それまで見つからなかったデータセットへの知識伝達と一般化を容易にする。
デコーダネットワークは、グラフ注意ネットワークとして実装された予測対象ネットワークをパラメータ化して、表形式のデータセットの不均一性に対応する。
論文 参考訳(メタデータ) (2023-11-16T17:45:59Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [58.617025733655005]
緩和ラベルバイアス(M-Tuning)を用いた視覚言語プロンプトチューニング手法を提案する。
これはWordNetからのオープンワードを導入し、クローズドセットラベルワードのみからもっと多くのプロンプトテキストを形成する単語の範囲を広げ、シミュレートされたオープンセットシナリオでプロンプトをチューニングする。
提案手法は,様々なスケールのデータセット上で最高の性能を達成し,広範囲にわたるアブレーション研究もその有効性を検証した。
論文 参考訳(メタデータ) (2023-03-09T09:05:47Z) - Is margin all you need? An extensive empirical study of active learning
on tabular data [66.18464006872345]
我々は,OpenML-CC18ベンチマークを用いて,69の実世界のデータセット上での各種能動学習アルゴリズムの性能を解析した。
意外なことに、古典的なマージンサンプリング技術は、現在の最先端技術を含む、他のすべてのものよりも優れている。
論文 参考訳(メタデータ) (2022-10-07T21:18:24Z) - Learning Enhanced Representations for Tabular Data via Neighborhood
Propagation [24.485479610138498]
データインスタンスのクロスローパターンとクロスカラムパターンをモデル化するハイパーグラフを構築した。
次に、ターゲットデータインスタンス表現を強化するためにメッセージの伝搬を行います。
2つの重要なデータ予測タスクの実験は、提案したPETモデルの優越性を検証する。
論文 参考訳(メタデータ) (2022-06-14T04:24:52Z) - SubTab: Subsetting Features of Tabular Data for Self-Supervised
Representation Learning [5.5616364225463055]
私たちはTabular Data(SubTab)のサブセット機能である新しいフレームワークを紹介します。
本稿では,タブラルデータ(SubTab)のサブセット機能である新しいフレームワークを提案する。
我々は、自動エンコーダ設定で、その機能の一部分からデータを再構成することで、その基盤となる表現をよりよく捉えることができると論じている。
論文 参考訳(メタデータ) (2021-10-08T20:11:09Z) - Simple multi-dataset detection [83.9604523643406]
複数の大規模データセット上で統合検出器を訓練する簡単な方法を提案する。
データセット固有のアウトプットを共通の意味分類に自動的に統合する方法を示す。
私たちのアプローチは手動の分類学の調整を必要としません。
論文 参考訳(メタデータ) (2021-02-25T18:55:58Z) - i-Mix: A Domain-Agnostic Strategy for Contrastive Representation
Learning [117.63815437385321]
対照的な表現学習を改善するために, 単純で効果的なドメインに依存しない正規化戦略i-Mixを提案する。
実験では、i-Mixはドメイン間の学習表現の質を一貫して改善することを示した。
論文 参考訳(メタデータ) (2020-10-17T23:32:26Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。