Spuriosity Rankings for Free: A Simple Framework for Last Layer
Retraining Based on Object Detection
- URL: http://arxiv.org/abs/2311.00079v1
- Date: Tue, 31 Oct 2023 18:44:03 GMT
- Title: Spuriosity Rankings for Free: A Simple Framework for Last Layer
Retraining Based on Object Detection
- Authors: Mohammad Azizmalayeri, Reza Abbasi, Amir Hosein Haji Mohammad rezaie,
Reihaneh Zohrabi, Mahdi Amiri, Mohammad Taghi Manzuri, Mohammad Hossein
Rohban
- Abstract summary: We propose a novel ranking framework to identify images without spurious cues.
We use the object detector as a measure to score the presence of the target object in the images.
Next, the images are sorted based on this score, and the last-layer of the model is retrained on a subset of the data with the highest scores.
- Score: 5.199218657137718
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks have exhibited remarkable performance in various
domains. However, the reliance of these models on spurious features has raised
concerns about their reliability. A promising solution to this problem is
last-layer retraining, which involves retraining the linear classifier head on
a small subset of data without spurious cues. Nevertheless, selecting this
subset requires human supervision, which reduces its scalability. Moreover,
spurious cues may still exist in the selected subset. As a solution to this
problem, we propose a novel ranking framework that leverages an open vocabulary
object detection technique to identify images without spurious cues. More
specifically, we use the object detector as a measure to score the presence of
the target object in the images. Next, the images are sorted based on this
score, and the last-layer of the model is retrained on a subset of the data
with the highest scores. Our experiments on the ImageNet-1k dataset demonstrate
the effectiveness of this ranking framework in sorting images based on
spuriousness and using them for last-layer retraining.
Related papers
- PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
We propose PoseMatcher, an accurate model free one-shot object pose estimator.
We create a new training pipeline for object to image matching based on a three-view system.
To enable PoseMatcher to attend to distinct input modalities, an image and a pointcloud, we introduce IO-Layer.
arXiv Detail & Related papers (2023-04-03T21:14:59Z) - Disambiguation of One-Shot Visual Classification Tasks: A Simplex-Based
Approach [8.436437583394998]
We present a strategy which aims at detecting the presence of multiple objects in a given shot.
This strategy is based on identifying the corners of a simplex in a high dimensional space.
We show the ability of the proposed method to slightly, yet statistically significantly, improve accuracy in extreme settings.
arXiv Detail & Related papers (2023-01-16T11:37:05Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - Single Image Object Counting and Localizing using Active-Learning [4.56877715768796]
We present a new method for counting and localizing repeating objects in single-image scenarios.
Our method trains a CNN over a small set of labels carefully collected from the input image in few active-learning iterations.
Compared with existing user-assisted counting methods, our active-learning iterations achieve state-of-the-art performance in terms of counting and localizing accuracy, number of user mouse clicks, and running-time.
arXiv Detail & Related papers (2021-11-16T11:29:21Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
The performance of our method is assessed on DOTA, a large-scale remote sensing images dataset.
It highlights in particular some intrinsic weaknesses for the few-shot object detection task.
arXiv Detail & Related papers (2021-09-27T13:04:53Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
We propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN)
The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features.
arXiv Detail & Related papers (2021-08-04T18:29:42Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - One-Shot Image Classification by Learning to Restore Prototypes [11.448423413463916]
One-shot image classification aims to train image classifiers over the dataset with only one image per category.
For one-shot learning, the existing metric learning approaches would suffer poor performance because the single training image may not be representative of the class.
We propose a simple yet effective regression model, denoted by RestoreNet, which learns a class transformation on the image feature to move the image closer to the class center in the feature space.
arXiv Detail & Related papers (2020-05-04T02:11:30Z) - StarNet: towards Weakly Supervised Few-Shot Object Detection [87.80771067891418]
We introduce StarNet - a few-shot model featuring an end-to-end differentiable non-parametric star-model detection and classification head.
Through this head, the backbone is meta-trained using only image-level labels to produce good features for jointly localizing and classifying previously unseen categories of few-shot test tasks.
Being a few-shot detector, StarNet does not require any bounding box annotations, neither during pre-training nor for novel classes adaptation.
arXiv Detail & Related papers (2020-03-15T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.