Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization
- URL: http://arxiv.org/abs/2311.00181v2
- Date: Sun, 24 Mar 2024 01:13:59 GMT
- Title: Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization
- Authors: Neelkamal Bhuyan, Debankur Mukherjee, Adam Wierman,
- Abstract summary: We study the smoothed online optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t in response to a quadratic hitting cost and an additional squared $ell$-norm cost for switching actions.
This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management.
We present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal performance.
- Score: 9.449153668916098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the smoothed online quadratic optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t$ in response to a quadratic hitting cost and an additional squared $\ell_2$-norm cost for switching actions. This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management, where switching-efficient algorithms are highly sought after. We study the SOQO problem in both adversarial and stochastic settings, and in this process, perform the first stochastic analysis of this class of problems. We provide the online optimal algorithm when the minimizers of the hitting cost function evolve as a general stochastic process, which, for the case of martingale process, takes the form of a distribution-agnostic dynamic interpolation algorithm (LAI). Next, we present the stochastic-adversarial trade-off by proving an $\Omega(T)$ expected regret for the adversarial optimal algorithm in the literature (ROBD) with respect to LAI and, a sub-optimal competitive ratio for LAI in the adversarial setting. Finally, we present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal stochastic performance.
Related papers
- Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback [34.7178680288326]
Stradi et al.(2024) proposed the first best-of-both-worlds algorithm for constrained Markov decision processes.
In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with bandit feedback.
Our algorithm is based on a policy optimization approach, which is much more efficient than occupancy-measure-based methods.
arXiv Detail & Related papers (2024-10-03T07:44:40Z) - Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization [11.11876897168701]
We propose an algorithm that achieves a regret bound of order $tildemathcalO(mathrmpoly(H)sqrtSAT)$.
The proposed algorithm and analysis completely avoid the typical tool given by occupancy measures.
arXiv Detail & Related papers (2024-07-08T08:06:45Z) - Decentralized Multi-Task Online Convex Optimization Under Random Link
Failures [5.513958040574729]
We develop a robust decentralized saddle-point algorithm against random link failures with heterogeneous probabilities.
We extend our algorithm and analysis to the two-point bandit feedback scenario.
arXiv Detail & Related papers (2024-01-04T00:57:33Z) - Stochastic Optimal Control Matching [53.156277491861985]
Our work introduces Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for optimal control.
The control is learned via a least squares problem by trying to fit a matching vector field.
Experimentally, our algorithm achieves lower error than all the existing IDO techniques for optimal control.
arXiv Detail & Related papers (2023-12-04T16:49:43Z) - Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary
Dueling Bandits [27.279654173896372]
We study the problem of emphdynamic regret minimization in $K$-armed Dueling Bandits under non-stationary or time varying preferences.
This is an online learning setup where the agent chooses a pair of items at each round and observes only a relative binary win-loss' feedback for this pair.
arXiv Detail & Related papers (2021-11-06T16:46:55Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Efficient Optimistic Exploration in Linear-Quadratic Regulators via
Lagrangian Relaxation [107.06364966905821]
We study the exploration-exploitation dilemma in the linear quadratic regulator (LQR) setting.
Inspired by the extended value iteration algorithm used in optimistic algorithms for finite MDPs, we propose to relax the optimistic optimization of ofulq.
We show that an $epsilon$-optimistic controller can be computed efficiently by solving at most $Obig(log (1/epsilon)big)$ Riccati equations.
arXiv Detail & Related papers (2020-07-13T16:30:47Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Constrained Multiagent Rollout and Multidimensional Assignment with the
Auction Algorithm [0.0]
We consider an extension of the rollout algorithm that applies to constrained deterministic dynamic programming.
We show that if the base produces a feasible solution, the rollout algorithm has a cost improvement property.
We show that the cost improvement property is maintained with an alternative implementation that has greatly reduced computational requirements.
arXiv Detail & Related papers (2020-02-18T07:09:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.