Stochastic Optimal Control Matching
- URL: http://arxiv.org/abs/2312.02027v5
- Date: Fri, 11 Oct 2024 12:39:38 GMT
- Title: Stochastic Optimal Control Matching
- Authors: Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen,
- Abstract summary: Our work introduces Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for optimal control.
The control is learned via a least squares problem by trying to fit a matching vector field.
Experimentally, our algorithm achieves lower error than all the existing IDO techniques for optimal control.
- Score: 53.156277491861985
- License:
- Abstract: Stochastic optimal control, which has the goal of driving the behavior of noisy systems, is broadly applicable in science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic optimal control that stems from the same philosophy as the conditional score matching loss for diffusion models. That is, the control is learned via a least squares problem by trying to fit a matching vector field. The training loss, which is closely connected to the cross-entropy loss, is optimized with respect to both the control function and a family of reparameterization matrices which appear in the matching vector field. The optimization with respect to the reparameterization matrices aims at minimizing the variance of the matching vector field. Experimentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic optimal control for three out of four control problems, in some cases by an order of magnitude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel technique that may be of independent interest. Code at https://github.com/facebookresearch/SOC-matching
Related papers
- Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Vector Optimization with Gaussian Process Bandits [7.049738935364297]
Learning problems in which multiple objectives must be considered simultaneously often arise in various fields, including engineering, drug design, and environmental management.
Traditional methods for dealing with multiple black-box objective functions have limitations in incorporating objective preferences and exploring the solution space accordingly.
We propose Vector Optimization with Gaussian Process (VOGP), a probably approximately correct adaptive elimination algorithm that performs black-box vector optimization using Gaussian process bandits.
arXiv Detail & Related papers (2024-12-03T14:47:46Z) - Best of Both Worlds Guarantees for Smoothed Online Quadratic Optimization [9.449153668916098]
We study the smoothed online optimization (SOQO) problem where, at each round $t$, a player plays an action $x_t in response to a quadratic hitting cost and an additional squared $ell$-norm cost for switching actions.
This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management.
We present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal performance.
arXiv Detail & Related papers (2023-10-31T22:59:23Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Learning to Optimize Quasi-Newton Methods [22.504971951262004]
This paper introduces a novel machine learning called LODO, which tries to online meta-learn the best preconditioner during optimization.
Unlike other L2O methods, LODO does not require any meta-training on a training task distribution.
We show that our gradient approximates the inverse Hessian in noisy loss landscapes and is capable of representing a wide range of inverse Hessians.
arXiv Detail & Related papers (2022-10-11T03:47:14Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
Distributed Constraint Optimization Problems (DCOPs) are an important subclass of optimization problems.
We propose a novel directed acyclic graph schema representation for DCOPs and leverage the Graph Attention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally labelled data in an offline manner, so as to boost a broad range of DCOP algorithms.
arXiv Detail & Related papers (2021-12-08T09:24:10Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Robust Deep Learning as Optimal Control: Insights and Convergence
Guarantees [19.28405674700399]
adversarial examples during training is a popular defense mechanism against adversarial attacks.
By interpreting the min-max problem as an optimal control problem, it has been shown that one can exploit the compositional structure of neural networks.
We provide the first convergence analysis of this adversarial training algorithm by combining techniques from robust optimal control and inexact methods in optimization.
arXiv Detail & Related papers (2020-05-01T21:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.