WinNet: Make Only One Convolutional Layer Effective for Time Series Forecasting
- URL: http://arxiv.org/abs/2311.00214v2
- Date: Fri, 7 Jun 2024 07:26:02 GMT
- Title: WinNet: Make Only One Convolutional Layer Effective for Time Series Forecasting
- Authors: Wenjie Ou, Zhishuo Zhao, Dongyue Guo, Zheng Zhang, Yi Lin,
- Abstract summary: We present a highly accurate and simply structured CNN-based model with only one convolutional layer, called WinNet.
Results demonstrate that WinNet can achieve SOTA performance and lower complexity over CNN-based methods.
- Score: 11.232780368635416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have recently achieved significant performance improvements in time series forecasting. We present a highly accurate and simply structured CNN-based model with only one convolutional layer, called WinNet, including (i) Sub-window Division block to transform the series into 2D tensor, (ii) Dual-Forecasting mechanism to capture the short- and long-term variations, (iii) Two-dimensional Hybrid Decomposition (TDD) block to decompose the 2D tensor into the trend and seasonal terms to eliminate the non-stationarity, and (iv) Decomposition Correlation Block (DCB) to leverage the correlation between the trend and seasonal terms by the convolution layer. Results on eight benchmark datasets demonstrate that WinNet can achieve SOTA performance and lower computational complexity over CNN-, MLP- and Transformer-based methods. The code will be available at: https://github.com/ouwen18/WinNet.
Related papers
- sTransformer: A Modular Approach for Extracting Inter-Sequential and Temporal Information for Time-Series Forecasting [6.434378359932152]
We review and categorize existing Transformer-based models into two main types: (1) modifications to the model structure and (2) modifications to the input data.
We propose $textbfsTransformer$, which introduces the Sequence and Temporal Convolutional Network (STCN) to fully capture both sequential and temporal information.
We compare our model with linear models and existing forecasting models on long-term time-series forecasting, achieving new state-of-the-art results.
arXiv Detail & Related papers (2024-08-19T06:23:41Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
We study inference acceleration using distributed convolutional neural networks (CNNs) in collaborative edge computing network.
We propose a novel collaborative edge computing using fused-layer parallelization to partition a CNN model into multiple blocks of convolutional layers.
arXiv Detail & Related papers (2022-07-22T18:38:11Z) - CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic
Segmentation [8.944151935020992]
We propose Cascade Point-Grid Fusion Network (CPGNet), which ensures both effectiveness and efficiency.
CPGNet without ensemble models or TTA is comparable with the state-of-the-art RPVNet, while it runs 4.7 times faster.
arXiv Detail & Related papers (2022-04-21T06:56:30Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
We propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures.
Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models.
arXiv Detail & Related papers (2021-08-29T08:49:31Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
We propose an efficient and accurate deep network for disparity estimation named FADNet.
It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.
arXiv Detail & Related papers (2020-03-24T10:27:11Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.