A Definition of Open-Ended Learning Problems for Goal-Conditioned Agents
- URL: http://arxiv.org/abs/2311.00344v4
- Date: Fri, 7 Jun 2024 18:52:13 GMT
- Title: A Definition of Open-Ended Learning Problems for Goal-Conditioned Agents
- Authors: Olivier Sigaud, Gianluca Baldassarre, Cedric Colas, Stephane Doncieux, Richard Duro, Pierre-Yves Oudeyer, Nicolas Perrin-Gilbert, Vieri Giuliano Santucci,
- Abstract summary: We argue that open-ended learning is generally conceived as a composite notion encompassing a set of diverse properties.
We focus on the subset of open-ended goal-conditioned reinforcement learning problems in which agents can learn a growing repertoire of goal-driven skills.
- Score: 18.2920082469313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A lot of recent machine learning research papers have ``open-ended learning'' in their title. But very few of them attempt to define what they mean when using the term. Even worse, when looking more closely there seems to be no consensus on what distinguishes open-ended learning from related concepts such as continual learning, lifelong learning or autotelic learning. In this paper, we contribute to fixing this situation. After illustrating the genealogy of the concept and more recent perspectives about what it truly means, we outline that open-ended learning is generally conceived as a composite notion encompassing a set of diverse properties. In contrast with previous approaches, we propose to isolate a key elementary property of open-ended processes, which is to produce elements from time to time (e.g., observations, options, reward functions, and goals), over an infinite horizon, that are considered novel from an observer's perspective. From there, we build the notion of open-ended learning problems and focus in particular on the subset of open-ended goal-conditioned reinforcement learning problems in which agents can learn a growing repertoire of goal-driven skills. Finally, we highlight the work that remains to be performed to fill the gap between our elementary definition and the more involved notions of open-ended learning that developmental AI researchers may have in mind.
Related papers
- A Definition of Continual Reinforcement Learning [69.56273766737527]
In a standard view of the reinforcement learning problem, an agent's goal is to efficiently identify a policy that maximizes long-term reward.
Continual reinforcement learning refers to the setting in which the best agents never stop learning.
We formalize the notion of agents that "never stop learning" through a new mathematical language for analyzing and cataloging agents.
arXiv Detail & Related papers (2023-07-20T17:28:01Z) - Towards Open Vocabulary Learning: A Survey [146.90188069113213]
Deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection.
Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training.
This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2023-06-28T02:33:06Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
This book criticizes the supposed scientific progress in the field of computer vision.
It proposes the investigation of vision within the framework of information-based laws of nature.
arXiv Detail & Related papers (2022-06-30T15:20:36Z) - A Novel Multimodal Approach for Studying the Dynamics of Curiosity in
Small Group Learning [2.55061802822074]
We propose an integrated socio-cognitive account of curiosity that ties observable behaviors in peers to underlying curiosity states.
We make a bipartite distinction between individual and interpersonal functions that contribute to curiosity, and multimodal behaviors that fulfill these functions.
This work is a step towards designing learning technologies that can recognize and evoke moment-by-moment curiosity during learning in social contexts.
arXiv Detail & Related papers (2022-04-01T16:12:40Z) - Towards a theory of out-of-distribution learning [23.878004729029644]
We propose a chronological approach to defining different learning tasks using the provably approximately correct (PAC) learning framework.
We will start with in-distribution learning and progress to recently proposed lifelong or continual learning.
Our hope is that this work will inspire a universally agreed-upon approach to quantifying different types of learning.
arXiv Detail & Related papers (2021-09-29T15:35:16Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
We argue that the next generation of AI must embrace "dark" humanlike common sense for solving novel tasks.
We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense.
arXiv Detail & Related papers (2020-04-20T04:07:28Z) - Explore, Discover and Learn: Unsupervised Discovery of State-Covering
Skills [155.11646755470582]
'Explore, Discover and Learn' (EDL) is an alternative approach to information-theoretic skill discovery.
We show that EDL offers significant advantages, such as overcoming the coverage problem, reducing the dependence of learned skills on the initial state, and allowing the user to define a prior over which behaviors should be learned.
arXiv Detail & Related papers (2020-02-10T10:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.