Towards a theory of out-of-distribution learning
- URL: http://arxiv.org/abs/2109.14501v5
- Date: Fri, 7 Jun 2024 17:24:36 GMT
- Title: Towards a theory of out-of-distribution learning
- Authors: Jayanta Dey, Ali Geisa, Ronak Mehta, Tyler M. Tomita, Hayden S. Helm, Haoyin Xu, Eric Eaton, Jeffery Dick, Carey E. Priebe, Joshua T. Vogelstein,
- Abstract summary: We propose a chronological approach to defining different learning tasks using the provably approximately correct (PAC) learning framework.
We will start with in-distribution learning and progress to recently proposed lifelong or continual learning.
Our hope is that this work will inspire a universally agreed-upon approach to quantifying different types of learning.
- Score: 23.878004729029644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning is a process wherein a learning agent enhances its performance through exposure of experience or data. Throughout this journey, the agent may encounter diverse learning environments. For example, data may be presented to the leaner all at once, in multiple batches, or sequentially. Furthermore, the distribution of each data sample could be either identical and independent (iid) or non-iid. Additionally, there may exist computational and space constraints for the deployment of the learning algorithms. The complexity of a learning task can vary significantly, depending on the learning setup and the constraints imposed upon it. However, it is worth noting that the current literature lacks formal definitions for many of the in-distribution and out-of-distribution learning paradigms. Establishing proper and universally agreed-upon definitions for these learning setups is essential for thoroughly exploring the evolution of ideas across different learning scenarios and deriving generalized mathematical bounds for these learners. In this paper, we aim to address this issue by proposing a chronological approach to defining different learning tasks using the provably approximately correct (PAC) learning framework. We will start with in-distribution learning and progress to recently proposed lifelong or continual learning. We employ consistent terminology and notation to demonstrate how each of these learning frameworks represents a specific instance of a broader, more generalized concept of learnability. Our hope is that this work will inspire a universally agreed-upon approach to quantifying different types of learning, fostering greater understanding and progress in the field.
Related papers
- Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs [58.09253149867228]
This paper assesses the domain knowledge of LLMs through its understanding of different mathematical skills required to solve problems.
Motivated by the use of LLMs as a general scientific assistant, we propose textitNTKEval to assess changes in LLM's probability distribution.
Our systematic analysis finds evidence of domain understanding during in-context learning.
Certain instruction-tuning leads to similar performance changes irrespective of training on different data, suggesting a lack of domain understanding across different skills.
arXiv Detail & Related papers (2024-05-24T12:04:54Z) - When Meta-Learning Meets Online and Continual Learning: A Survey [39.53836535326121]
meta-learning is a data-driven approach to optimize the learning algorithm.
Continual learning and online learning, both of which involve incrementally updating a model with streaming data.
This paper organizes various problem settings using consistent terminology and formal descriptions.
arXiv Detail & Related papers (2023-11-09T09:49:50Z) - A Definition of Continual Reinforcement Learning [69.56273766737527]
In a standard view of the reinforcement learning problem, an agent's goal is to efficiently identify a policy that maximizes long-term reward.
Continual reinforcement learning refers to the setting in which the best agents never stop learning.
We formalize the notion of agents that "never stop learning" through a new mathematical language for analyzing and cataloging agents.
arXiv Detail & Related papers (2023-07-20T17:28:01Z) - The Learnability of In-Context Learning [16.182561312622315]
We propose a first-of-its-kind PAC based framework for in-context learnability.
Our framework includes an initial pretraining phase, which fits a function to the pretraining distribution.
We show that in-context learning is more about identifying the task than about learning it.
arXiv Detail & Related papers (2023-03-14T13:28:39Z) - A Comprehensive Survey of Continual Learning: Theory, Method and
Application [64.23253420555989]
We present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications.
We summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency.
arXiv Detail & Related papers (2023-01-31T11:34:56Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - A survey on domain adaptation theory: learning bounds and theoretical
guarantees [17.71634393160982]
The main objective of this survey is to provide an overview of the state-of-the-art theoretical results in a specific, and arguably the most popular, sub-field of transfer learning.
In this sub-field, the data distribution is assumed to change across the training and the test data, while the learning task remains the same.
We provide a first up-to-date description of existing results related to domain adaptation problem.
arXiv Detail & Related papers (2020-04-24T16:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.